TEORIAS E FILOSOFIAS DE GRACELI 315

 


quarta-feira, 15 de maio de 2019



ângulo mágico é um ângulo definido precisamente, cujo valor é de aproximadamente 54.7356°. O ângulo mágico é uma raiz de um polinômio de Legendre de segunda ordem, P2(cos θ) = 0, e portanto, qualquer interação que depende deste polinômio de Legendre de segunda ordem zera no ângulo mágico. Esta propriedade faz com que o ângulo mágico seja particularmente importante em espectroscopia RMN de estado sólido com giro no ângulo mágico. No imageamento por ressonância magnética, estruturas com colágeno ordenado, tais como tendões e ligamentos, orientados no ângulo mágico podem aparecer hiperintensos em algumas sequências, isso é chamado de artefato ou efeito do ângulo mágico.

    Definição matemática[editar | editar código-fonte]

    Ângulo mágico
    O ângulo mágico θm é

    X

    EM = ENERGIA E MASSA.

    SDCG = SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI


    EM X SDC G.=




    EM =
    X


    V [R] [MA] =  Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

    X =

    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D


    em que arccos e arctan são as funções inversas do cosseno e da tangente, respectivamente.OEISicon light.svg (sequência A195696 na OEIS)
    O ângulo θm é o ângulo entre a diagonal espacial de um cubo e qualquer uma das três arestas a ela conectadas, conforme a imagem.
    O ângulo mágico θ também é a metade do ângulo de abertura formado quando um cubo é rotacionado em torno de sua diagonal espacial, que pode ser representado como o  ou  radianos ou, aproximadamente, 109.4712°. Este ângulo mágico dobrado está diretamente relacionado à geometria molecular tetraédrica e é o ângulo de um vértice ao centro exato do tetraedro (isto é, o ângulo da aresta central, também conhecido como o ângulo tetraédrico).

    Ângulo mágico e ressonância magnética nuclear[editar | editar código-fonte]

    O ângulo mágico visto em uma ressonância magnética do ombro.
    Em espectroscopia por ressonância magnética nuclear (RMN), três interações magnéticas nucleares proeminentes, o acoplamento dipolar, a mudança química de anisotropia (CSA), e o acoplamento quadrupolar de primeira ordem, dependem da orientação do tensor de interação com o campo magnético externo.
    Girando a amostra em torno de um dado eixo, a dependência angular média torna-se:
    X

    EM = ENERGIA E MASSA.

    SDCG = SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI


    EM X SDC G.=




    EM =
    X


    V [R] [MA] =  Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

    X =

    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D

    em que θ é o ângulo entre o eixo principal da interação e o campo magnético, θr é o ângulo do eixo de rotação em relação ao campo magnético e β é o (arbitrário) o ângulo entre o eixo de rotação e o eixo principal da interação.
    Para acoplamentos dipolares, o eixo principal corresponde ao vetor internuclear entre os giros acoplados; para o CSA, ele corresponde à direção com a maior deshielding; para o acoplamento quadrupolar, ele corresponde ao eixo z do tensor  gradiente do campo elétrico.
    O ângulo β não pode ser manipulado já que ele depende da orientação da interação relativamente ao quadro molecular e da orientação da molécula em relação ao campo externo. O ângulo θr, no entanto, pode ser decidido pelo experimentador. Se for definido θr = θm ≈ 54.7°, então a média da dependência angular vai para zero. Giro no ângulo mágico é uma técnica em espectroscopia RMN de estado sólido, que utiliza este princípio para remover ou reduzir a influência de interações anisotrópicas, aumentando, assim, a resolução espectral.
    Para uma interação independente de tempo, isto é, acoplamentos dipolares heteronucleares, CSA e acoplamentos quadrupolares de primeira ordem, o componente anisotrópico é muito reduzido e quase suprimido no limite de rápido giro, isto é quando a frequência de giro é maior do que a largura da interação.
    A média só é próxima de zero em um tratamento de teoria de perturbação de primeira ordem; termos de ordem superior fazem com que as frequências permitidas em múltiplos da frequência de giro apareçam, criando bandas laterais de giro no espectro.
    As interações dependentes do tempo, como acoplamentos dipolares homonucleares, oferecem maior dificuldade para o cálculo da média para os seus valores isotrópicos por giro no ângulo mágico; uma rede de giros fortemente acoplados produzirá uma mistura de estados de giro durante o curso da rotação da amostra, interferindo com o cálculo da média.













    QUANDO SE VÊ UMA PEDRA SE TEM A NOÇÃO DE UMA MASSA TRIDIMENSIONAL E QUE PODE SER MOVIMENTADA POR FORÇAS E VARIAÇÕES NO TEMPO.


    JÁ NA MECÂNICA GRACELI DECADIMENSIONAL CATEGORIAL TRANSCENDENTE IDETERMINADA SE TEM UMA NOÇÃO DE UM UNIVERSO DE INTERAÇÕES, TRANSFORMAÇÕES NAQUELE OBJETO, FUNDAMENTADO POR DEZ DIMENSÕES, CATEGORIAS, TRANSCENDÊNCIAS E INDETERMINALIDADES.

    ONDE TEMPO E DIMENSÕES GEOMÉTRICAS [LATITUDE, LONGITUDE E ALTURA] NÃO SÃO FUNDAMENTAIS. MAS SIM AS DEZ DIMENSÕES DE GRACELI [VER ABAIXO].

    ONDE O QUE SE DEVE SER LEVADO EM CONSIDERAÇÃO É O UNIVERSO DE ENERGIAS, FENÔMENOS, DIMENSÕES DE GRACELI  E AS VARIÁVEIS QUE CADA TIPO DE PARTÍCULA E ESTRUTURA LEVA CONSIGO E AS POTENCIALIDADES E CAPACIDADE QUE TEM DE INTERAGIR E SE TRANSFORMAR E TRANSFORMAR AS OUTRAS PARTÍCULAS, ENERGIAS E FENÔMENOS DAS OUTRAS ESTRUTURAS.






    EM = ENERGIA E MASSA.

    SDCG = SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI


    EM X SDC G.=




    EM =
    X


    V [R] [MA] =  Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

    X =


    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D








     VELOCIDADE ALTERA E MODIFICA ESTRUTURAS, ENERGIAS, FENÔMENOS, INTERAÇÕES, TRANSFORMAÇÕES, TEMPERATURA, MOMENTUM, E OUTROS FENÔMENOS E CONFORME O SISTEMA DECADIMENSIONAL CATEGORIAL GRACELI.




    RELATIVIDADE DO MOVIMENTO E RELATIVIDADE CATEGORIAL GRACELI.

    [VELOCIDADE, ROTAÇÃO E MOVIMENTO ANGULAR]
    V [R] [MA] =  Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

    X =

    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D




    mecânica TRANSICIONAL Graceli se fundamenta nas mudanças de fases de estados, fases de isótopos, de estrutura atômica e molecular, [ FASES DE ESTADOS, ESTRUTURAS, ENERGIAS, FENÔMENOS E DIMENSÕES CATEGORIAIS] com variáveis de movimentos, interações, transformações, temperatura, densidade e pressão, e outros, e conforme o sistema decadimensional e categorial Graceli [SDC Graceli]. E FENÔMENOS E ENERGIAS E VARIAÇÕES DE ESTRUTURAS QUE ACONTECEM DENTRO DAS ESTRUTURAS E ENERGIAS.


    um ferromagnético sendo derretido a 300 graus Celsius tem uma realidade física e química, e com variações quântica e orbitais, elétrica, termodinâmicas, mecãnicas, e outros diferentes de um derretimento a 350 graus.

    o mesmo serve para outros materiais e com outras variações levando a um indeterminismo transcendente, categorial e decadimensional Graceli.


    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D


    O sistema decadimensional e categorial Graceli pode ser visto como um outro ramo da física e da física, onde envolve condições da matéria e da energia, fenômenos e dimensões, realçados por categorias.

    O único sistema que relaciona dez dimensões relacionadas com a matéria e suas energias, fenômenos e categoria.


    Com isto pode-se dividir a física em quatro grandes fases:

    a clássica, a quântica, a relatividade, e a categorial decadimensional Graceli.




    teoria da relatividade categorial Graceli

    ENERGIA, MASSA, FENÔMENOS, ESPAÇO, TEMPO, INTERAÇÕES, TRANSFORMAÇÕES, CONDUTIVIDADE, EMISSÕES, ABSORÇÕES, DIFRAÇÃO, MOMENTUM.


    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D











    NO SISTEMA CATEGORIAL DE GRACELI TODO TIPO DE MOVIMENTO TEM AÇÃO TRANSFORMADORA  [como os outros elementos, como temperatura, radioatividade, luz, e outros],SOBRE ESTRUTURAS E ENERGIAS, TEMPO E ESPAÇO, INÉRCIA E GRAVIDADE, LUZ .


    Estados de Graceli de matéria, energias, momentuns, inércias, e entropias.


    Estados térmico.
    Estado quântico.
    De dilatação.
    De entropia.
    De potencia de entropia e relação com dilatação.
    De magnetismo [correntes, momentum e condutividades]..
    De eletricidade [correntes, momentum e condutividades].
    De condutividade.
    De mometum e fluxos variados.
    De potencial inercial da matéria e energia.
    De transformação.
    De comportamento de cargas e interações com elétrons.
    De emaranhamentos e transemaranhamentos.
    De paridades e transparidades.
    De radiação.
    Radioatividade.
    De radioisótopos.
    De relação entre radioatividade, radiação, eletromagnetismo e termoentropia.
    De capacidade e potencialidade de resistir a pressão, a capacidade de resistir a pressão e transformar em entropia e momentum.

    De resistir à temperaturas.
    E transformar em dilatação, interações entre partículas, energias e campos.
    Estado dos padrões de variações e efeitos variacionais.
    Estado de incerteza dos fenômenos e entre as suas interações.


    E outros estados de matéria, energia, momentum, tipos de inércia [como de inércia potencial de energias magnética, elétrica, forte e fraca, dinâmica, geométrica [côncava, convexa e plana] em sistema.


    E que todos estes tipos de estados tendem a ter ações de uns sobre os outros, formando um aglomerado de fenômenos de efeitos na produção de novas causas. E de efeitos variacionais de uns sobre os outros, ou seja, um sistema integrado.



    Sobre padrões de entropia.

    Mesmo havendo uma desordem, esta desordem segue alguns parâmetros futuros e que dependem de condições dos estados de Graceli, ou seja, a desordem segue alguns padrões e ordens conforme avança e passa por fases e agentes fenomênicos, estruturais e geométricos.


    Porem, a reversibilidade se torna impossível, aumenta a instabilidade e as incertezas de posição, intensidade, variações, efeitos e outros fenômenos conforme as próprias intensidades de dilatações, e agentes e estados envolvidos.


    Levando em consideração que mesmo havendo ordem não é possível a reversibilidade do estado e condições em que se encontravam a energia, matéria, momentum, inércias, dimensões, e outros agentes.


    A temperatura pode voltar ao seu lugar e ao seu ponto inicial, mas não as estruturas das partículas, as intensidades infinitésimas de padrões de energias, e nem o grau de oscilações que a energias, as interações, as transformações que passam estas partículas e suas energias, estruturas e interações, e as interações e intensidades de grau de variação de cada agente.


    Porem, a desordem é temporal, ou seja, com o passar do tempo outras ordens e padrões se afirmarão.


    Sendo que também a entropia varia conforme intensidade de instabilidade por tempo. E tempo por intensidade de instabilidade.


    Assim, segue efeitos variacionais e de incertezas por instabilidade de energia adicionada, e de tempo.


    Ou seja, uma grande instabilidade e desordem em pouco tempo vai levar a uma grande e instável por mais tempo uma entropia.


    Do que um grande tempo com pequena intensidade de instabilidade e energia adicionada num sistema ou numa variação térmica.


    Ou mesmo numa variação eletromagnética, ou mesmo na condutividade.


    Princípio tempo instabilidade de Graceli.

    Assim, a desordem acaba por encontrar uma ordem se não acontecer nenhuma instabilidade novamente. Pois, as partículas e energias tendem a se reorganizar novamente conforme o passar do tempo,  e esta reorganização segue um efeito progressivo em relação à desordem e tempo. Como os vistos acima.


    Ou seja, aquela organização anterior não vai mais acontecer, pois, segue o princípio da irreversibilidade, mas outras organizações se formarão conforme avança o tempo de estabilidade.


    as dimensões categorias podem ser divididas em cinco formas diversificadas.

    tipos, níveis, potenciais, tempo de ação, especificidades de transições de energias, de fenômenos, de estados de energias, físicos [estruturais], de fenômenos, estados quântico, e outros.



    paradox of the system of ten dimensions and categories of Graceli.



    a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.



    that is, categories ground the variables of phenomena and their interactions and transformations.



    and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.



    but structures are related to transitions of physical states, quantum, energies, phenomena, and others.



    as well as transitions of energies, phenomena, categories and dimensions.

    paradoxo do sistema de dez dimensões e categorias de Graceli.

    um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.

    ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.

    e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.

    mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.

    como também transições de energias, fenômenos, categorias e dimensões.







     = entropia reversível

    postulado categorial e decadimensional Graceli.

    TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.


    todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
    matriz categorial Graceli.

    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D


    1] Cosmic space.
    2] Cosmic and quantum time.
    3] Structures.
    4] Energy.
    5] Phenomena.
    6] Potential.
    7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
    8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
    9] thermal specificity, other energies, and structure phenomena, and phase transitions.
    10] action time specificity in physical and quantum processes.




    Sistema decadimensional Graceli.

    1]Espaço cósmico.
    2]Tempo cósmico  e quântico.
    3]Estruturas.[isótopos, estrutura eletrônica, elementos químicos, amorfos e cristalinos, e, outros.
    4]Energias.
    5]Fenômenos.
    6]Potenciais., e potenciais de campos, de energias, de transições de estruturas e estados físicos, quãntico,  e estados de fenômenos e estados de transições, transformações e decaimentos.
    7]Transições de fases de estados físicos [amorfos e cristalinos] e estados de energias e fenômenos de Graceli.
    8]Tipos e níveis de magnetismo [em paramagnéticos, diamagnético, ferromagnéticos] e eletricidade, radioatividade [fissões e fusões], e luz [laser, maser, incandescências, fluorescências, fosforescências, e outros.
    9] especificidade térmica, de outras energias, e fenômenos das estruturas, e transições de fases.
    10] especificidade de tempo de ações em processos físicos e quântico.


    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D


    Matriz categorial de Graceli.


    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             Dl


    Tipos, níveis, potenciais, tempo de ação, temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.

    [estruturas: isótopos, partículas, amorfos e cristalinos, paramagnéticos, dia, ferromagnéticos, e estados [físicos, quântico, de energias, de fenômenos, de transições, de interações, transformações e decaimentos, emissões e absorções, eletrostático, condutividade e fluidez]].
    trans-intermecânica de supercondutividade no sistema categorial de Graceli.

    EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]

    p it = potentials of interactions and transformations.
    Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.

    h e = quantum index and speed of light.

    [pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..


    EPG = GRACELI POTENTIAL STATUS.

    [pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]

    , [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].

    sábado, 18 de maio de 2019


    Analisando o efeito fotoelétrico quantitativamente usando o método de Einstein, as seguintes equações equivalentes são usadas:
    Energia do fóton = Energia necessária para remover um elétron + Energia cinética do elétron emitido
    Mais detalhes em: Energia do fóton
    Algebricamente:
    Onde:
    • h é a constante de Planck,
    • f é a frequência do foton incidente,
    •  é a função trabalho, ou energia mínima exigida para remover um elétron de sua ligação atômica,
    •  é a energia cinética máxima dos elétrons expelidos,
    • f0 é a frequência mínima para o efeito fotoelétrico ocorrer,
    • m é a massa de repouso do elétron expelido, e
    • vm é a velocidade dos elétrons expelidos.
    Notas:
    Se a energia do fóton (hf) não é maior que a função trabalho (), nenhum elétron será emitido. A função trabalho é ocasionalmente designada por .
    Em física do estado sólido costuma-se usar a energia de Fermi e não a energia de nível de vácuo como referencial nesta equação, o que faz com que a mesma adquira uma forma um pouco diferente.
    Note-se ainda que ao aumentar a intensidade da radiação incidente não vai causar uma maior energia cinética dos elétrons (ou electrões) ejectados, mas sim um maior número de partículas deste tipo removidas por unidade de tempo.






    x

    V [R] [MA] =  Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

    X =

    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D









    num sistema de emissões de partículas e ondas por ações de fótons sobre corpo negro vai depender dos isótopos, número atômico, especificidade de emissões conforme temperatura e elétrons, neutrons, prótons, estrutura eletrônica, estado quântico, estados de Graceli, temperatura e magnetismo do material que forma o corpo negro, levando em consideração o tipo de luz [maser, laser, ou mesmo outros tipos de radiações, e conforme o sistema decadimensional e categorial Graceli.


    Na química quântica, a estrutura eletrônica é o estado do movimento de elétrons em um campo eletrostático criado por núcleos estacionários.[1] O termo engloba tanto as funções de onda dos elétrons e as energias associadas a elas. Estrutura eletrônica é obtida através da resolução de equações da mecânica quântica para o referido problema de núcleos presos.
    Os problemas de estrutura eletrônica surgem da aproximação de Born–Oppenheimer. Junto com as dinâmicas nucleares, o problema da estrutura eletrônica é uma das duas etapas no estudo do movimento de um sistema molecular em mecânica quântica . Exceto por um pequeno número de problemas simples, tais como átomos hidrogenóides, a solução de problemas da estrutura eletrônica requerem computadores modernos.
    O problema da estrutura eletrônica  é rotineiramente resolvido com rogramas computacionais para química quântica. Cálculos de estrutura eletrônica encontram-se entre as mais computacionalmente intensivas tarefas de todos os cálculos científicos. Por esta razão, os cálculos de química quântica são ações importantes  e tomam muito tempo em supercomputadores científicos.
    Um grande número de métodos para obter eletrônico estruturas existentes e sua aplicabilidade varia de caso para caso.[





    Analisando o efeito fotoelétrico quantitativamente usando o método de Einstein, as seguintes equações equivalentes são usadas:
    Energia do fóton = Energia necessária para remover um elétron + Energia cinética do elétron emitido
    Mais detalhes em: Energia do fóton
    Algebricamente:
    Onde:
    • h é a constante de Planck,
    • f é a frequência do foton incidente,
    •  é a função trabalho, ou energia mínima exigida para remover um elétron de sua ligação atômica,
    •  é a energia cinética máxima dos elétrons expelidos,
    • f0 é a frequência mínima para o efeito fotoelétrico ocorrer,
    • m é a massa de repouso do elétron expelido, e
    • vm é a velocidade dos elétrons expelidos.
    Notas:
    Se a energia do fóton (hf) não é maior que a função trabalho (), nenhum elétron será emitido. A função trabalho é ocasionalmente designada por .
    Em física do estado sólido costuma-se usar a energia de Fermi e não a energia de nível de vácuo como referencial nesta equação, o que faz com que a mesma adquira uma forma um pouco diferente.
    Note-se ainda que ao aumentar a intensidade da radiação incidente não vai causar uma maior energia cinética dos elétrons (ou electrões) ejectados, mas sim um maior número de partículas deste tipo removidas por unidade de tempo.

    ESTRUTURA ELETRÔNICA, ISÓTOPOS, TEMPERATURA, ESPECIFICIDADE ELETRÔNICA DE TRANSFORMAÇÃO E INTERAÇÃO, ELETRICIDADE, MAGNETISMO
    =

    EE* I* T* E* M *  
    x


    V [R] [MA] =  Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

    X =

    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D










    OS ESTADOS DE ENERGIAS DE GRACELI SÃO TODOS TIPOS DE ENERGIAS , COMO TÉRMICA, ELÉTRICA, MAGNÉTICA, DINÂMICA, LUMINOSA, DE INTERAÇÕES, DE TRANSFORMAÇÕES, E OUTRAS FORMAS E TIPOS DE ENERGIAS. SENDO QUE VARIA E É ESPECÍFICA PARA CADA TIPO DE ESTRUTURA, ISÓTOPOS, E OUTROS.



    EM = ENERGIA E MASSA.

    SDCG = SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI

    EM X SDC G.=

    EM =
    X


    V [R] [MA] =  Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

    X =

    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D








     VELOCIDADE ALTERA E MODIFICA ESTRUTURAS, ENERGIAS, FENÔMENOS, INTERAÇÕES, TRANSFORMAÇÕES, TEMPERATURA, MOMENTUM, E OUTROS FENÔMENOS E CONFORME O SISTEMA DECADIMENSIONAL CATEGORIAL GRACELI.




    RELATIVIDADE DO MOVIMENTO E RELATIVIDADE CATEGORIAL GRACELI.

    [VELOCIDADE, ROTAÇÃO E MOVIMENTO ANGULAR]
    V [R] [MA] =  Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

    X =

    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D




    mecânica TRANSICIONAL Graceli se fundamenta nas mudanças de fases de estados, fases de isótopos, de estrutura atômica e molecular, [ FASES DE ESTADOS, ESTRUTURAS, ENERGIAS, FENÔMENOS E DIMENSÕES CATEGORIAIS] com variáveis de movimentos, interações, transformações, temperatura, densidade e pressão, e outros, e conforme o sistema decadimensional e categorial Graceli [SDC Graceli]. E FENÔMENOS E ENERGIAS E VARIAÇÕES DE ESTRUTURAS QUE ACONTECEM DENTRO DAS ESTRUTURAS E ENERGIAS.


    um ferromagnético sendo derretido a 300 graus Celsius tem uma realidade física e química, e com variações quântica e orbitais, elétrica, termodinâmicas, mecãnicas, e outros diferentes de um derretimento a 350 graus.

    o mesmo serve para outros materiais e com outras variações levando a um indeterminismo transcendente, categorial e decadimensional Graceli.


    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D


    O sistema decadimensional e categorial Graceli pode ser visto como um outro ramo da física e da física, onde envolve condições da matéria e da energia, fenômenos e dimensões, realçados por categorias.

    O único sistema que relaciona dez dimensões relacionadas com a matéria e suas energias, fenômenos e categoria.


    Com isto pode-se dividir a física em quatro grandes fases:

    a clássica, a quântica, a relatividade, e a categorial decadimensional Graceli.




    teoria da relatividade categorial Graceli

    ENERGIA, MASSA, FENÔMENOS, ESPAÇO, TEMPO, INTERAÇÕES, TRANSFORMAÇÕES, CONDUTIVIDADE, EMISSÕES, ABSORÇÕES, DIFRAÇÃO, MOMENTUM.


    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D











    NO SISTEMA CATEGORIAL DE GRACELI TODO TIPO DE MOVIMENTO TEM AÇÃO TRANSFORMADORA  [como os outros elementos, como temperatura, radioatividade, luz, e outros],SOBRE ESTRUTURAS E ENERGIAS, TEMPO E ESPAÇO, INÉRCIA E GRAVIDADE, LUZ .


    Estados de Graceli de matéria, energias, momentuns, inércias, e entropias.


    Estados térmico.
    Estado quântico.
    De dilatação.
    De entropia.
    De potencia de entropia e relação com dilatação.
    De magnetismo [correntes, momentum e condutividades]..
    De eletricidade [correntes, momentum e condutividades].
    De condutividade.
    De mometum e fluxos variados.
    De potencial inercial da matéria e energia.
    De transformação.
    De comportamento de cargas e interações com elétrons.
    De emaranhamentos e transemaranhamentos.
    De paridades e transparidades.
    De radiação.
    Radioatividade.
    De radioisótopos.
    De relação entre radioatividade, radiação, eletromagnetismo e termoentropia.
    De capacidade e potencialidade de resistir a pressão, a capacidade de resistir a pressão e transformar em entropia e momentum.

    De resistir à temperaturas.
    E transformar em dilatação, interações entre partículas, energias e campos.
    Estado dos padrões de variações e efeitos variacionais.
    Estado de incerteza dos fenômenos e entre as suas interações.


    E outros estados de matéria, energia, momentum, tipos de inércia [como de inércia potencial de energias magnética, elétrica, forte e fraca, dinâmica, geométrica [côncava, convexa e plana] em sistema.


    E que todos estes tipos de estados tendem a ter ações de uns sobre os outros, formando um aglomerado de fenômenos de efeitos na produção de novas causas. E de efeitos variacionais de uns sobre os outros, ou seja, um sistema integrado.



    Sobre padrões de entropia.

    Mesmo havendo uma desordem, esta desordem segue alguns parâmetros futuros e que dependem de condições dos estados de Graceli, ou seja, a desordem segue alguns padrões e ordens conforme avança e passa por fases e agentes fenomênicos, estruturais e geométricos.


    Porem, a reversibilidade se torna impossível, aumenta a instabilidade e as incertezas de posição, intensidade, variações, efeitos e outros fenômenos conforme as próprias intensidades de dilatações, e agentes e estados envolvidos.


    Levando em consideração que mesmo havendo ordem não é possível a reversibilidade do estado e condições em que se encontravam a energia, matéria, momentum, inércias, dimensões, e outros agentes.


    A temperatura pode voltar ao seu lugar e ao seu ponto inicial, mas não as estruturas das partículas, as intensidades infinitésimas de padrões de energias, e nem o grau de oscilações que a energias, as interações, as transformações que passam estas partículas e suas energias, estruturas e interações, e as interações e intensidades de grau de variação de cada agente.


    Porem, a desordem é temporal, ou seja, com o passar do tempo outras ordens e padrões se afirmarão.


    Sendo que também a entropia varia conforme intensidade de instabilidade por tempo. E tempo por intensidade de instabilidade.


    Assim, segue efeitos variacionais e de incertezas por instabilidade de energia adicionada, e de tempo.


    Ou seja, uma grande instabilidade e desordem em pouco tempo vai levar a uma grande e instável por mais tempo uma entropia.


    Do que um grande tempo com pequena intensidade de instabilidade e energia adicionada num sistema ou numa variação térmica.


    Ou mesmo numa variação eletromagnética, ou mesmo na condutividade.


    Princípio tempo instabilidade de Graceli.

    Assim, a desordem acaba por encontrar uma ordem se não acontecer nenhuma instabilidade novamente. Pois, as partículas e energias tendem a se reorganizar novamente conforme o passar do tempo,  e esta reorganização segue um efeito progressivo em relação à desordem e tempo. Como os vistos acima.


    Ou seja, aquela organização anterior não vai mais acontecer, pois, segue o princípio da irreversibilidade, mas outras organizações se formarão conforme avança o tempo de estabilidade.


    as dimensões categorias podem ser divididas em cinco formas diversificadas.

    tipos, níveis, potenciais, tempo de ação, especificidades de transições de energias, de fenômenos, de estados de energias, físicos [estruturais], de fenômenos, estados quântico, e outros.



    paradox of the system of ten dimensions and categories of Graceli.



    a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.



    that is, categories ground the variables of phenomena and their interactions and transformations.



    and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.



    but structures are related to transitions of physical states, quantum, energies, phenomena, and others.



    as well as transitions of energies, phenomena, categories and dimensions.

    paradoxo do sistema de dez dimensões e categorias de Graceli.

    um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.

    ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.

    e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.

    mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.

    como também transições de energias, fenômenos, categorias e dimensões.







     = entropia reversível

    postulado categorial e decadimensional Graceli.

    TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.


    todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
    matriz categorial Graceli.

    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D


    1] Cosmic space.
    2] Cosmic and quantum time.
    3] Structures.
    4] Energy.
    5] Phenomena.
    6] Potential.
    7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
    8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
    9] thermal specificity, other energies, and structure phenomena, and phase transitions.
    10] action time specificity in physical and quantum processes.




    Sistema decadimensional Graceli.

    1]Espaço cósmico.
    2]Tempo cósmico  e quântico.
    3]Estruturas.[isótopos, estrutura eletrônica, elementos químicos, amorfos e cristalinos, e, outros.
    4]Energias.
    5]Fenômenos.
    6]Potenciais., e potenciais de campos, de energias, de transições de estruturas e estados físicos, quãntico,  e estados de fenômenos e estados de transições, transformações e decaimentos.
    7]Transições de fases de estados físicos [amorfos e cristalinos] e estados de energias e fenômenos de Graceli.
    8]Tipos e níveis de magnetismo [em paramagnéticos, diamagnético, ferromagnéticos] e eletricidade, radioatividade [fissões e fusões], e luz [laser, maser, incandescências, fluorescências, fosforescências, e outros.
    9] especificidade térmica, de outras energias, e fenômenos das estruturas, e transições de fases.
    10] especificidade de tempo de ações em processos físicos e quântico.


    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D


    Matriz categorial de Graceli.


    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             Dl


    Tipos, níveis, potenciais, tempo de ação, temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.

    [estruturas: isótopos, partículas, amorfos e cristalinos, paramagnéticos, dia, ferromagnéticos, e estados [físicos, quântico, de energias, de fenômenos, de transições, de interações, transformações e decaimentos, emissões e absorções, eletrostático, condutividade e fluidez]].
    trans-intermecânica de supercondutividade no sistema categorial de Graceli.

    EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]

    p it = potentials of interactions and transformations.
    Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.

    h e = quantum index and speed of light.

    [pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..


    EPG = GRACELI POTENTIAL STATUS.

    [pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]

    , [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].

    sexta-feira, 17 de maio de 2019


    Em física do estado sólido, a Lei de Bragg está relacionada ao espalhamento de ondas que incidem em um cristal e fornece uma explicação para os efeitos difrativos observados nesta interação. Estes padrões são explicados relacionando os vetores de onda do feixe incidente e espalhado em uma rede cristalina para o caso de seu espalhamento elástico com os átomos do material.
    No caso de ondas de raios X, ao atingirem um átomo, o campo elétrico da radiação provoca uma força na nuvem eletrônica acelerando as cargas livres do material (elétrons). O movimento dessas cargas re-irradia ondas que têm aproximadamente a mesma frequência, uma vez que o espalhamento não é totalmente elástico, podendo haver interações de criação e aniquilação de fônons, porém em uma escala de energia muito menor. Nesse modelo, as frequências da radiação incidente e espalhada são consideradas idênticas. As ondas emergentes interferem entre si construtiva e destrutivamente, gerando padrões de difração no espaço que podem ser medidos em um filme ou detector. O padrão de difração resultante é a base da análise difrativa, chamada difração de Bragg.

      História[editar | editar código-fonte]

      Representação esquemática da estrutura cristalina do cloreto de sódio.
      difração de Bragg (também chamada de formulação de Bragg da difração de raios X) foi proposta originalmente por William Lawrence Bragg e William Henry Bragg em 1913, em resposta à descoberta de que sólidos cristalinos produziam padrões intrigantes de reflexão de raios x (ao contrário, por exemplo, de um líquido). Eles descobriram que esses cristais, para alguns comprimentos de onda e ângulos de incidência específicos, produziam intensos picos de radiação refletida (conhecidos como picos de Bragg). O conceito de difração de Braggse aplica igualmente a processos de difração de nêutrons e de elétrons[1]. Tanto os nêutrons quanto os raios X possuem comprimento de onda compatível com as distâncias interatômicas - da ordem de 150 pm - e, portanto, constituem uma excelente ferramenta para se explorar dimensões com essa ordem de grandeza.
      W.L. Bragg explicou esse resultado empírico modelando o cristal como um conjunto de planos discretos, paralelos e separados por uma distância constante d, propondo que a radiação incidente produziria um pico de Bragg se as reflexões especulares de vários planos interferissem construtivamente, ou seja, se a diferença de fase entre as frentes de onda refletidas por planos consecutivos fosse de radianos.
      A lei de Bragg foi derivada pelo físico Sir William Lawrence Bragg.[2] em 1912 e apresentada pela primeira vez em 11 de novembro desse mesmo ano à Sociedade Filosófica de Cambridge. Embora simples, a lei de Bragg confirmou a existência de partículas reais na escala atômica, e forneceu uma nova e poderosa ferramenta para o estudo de cristais utilizando difração de raios X e nêutrons. William Lawrence Bragg e seu pai, Sir William Henry Bragg, foram laureados com o Prêmio Nobel de física em 1915 por seu trabalho em determinar estruturas cristalinas, a começar pelo cloreto de sódio, o sulfeto de zinco e o diamante. Eles são a única equipe formada por pai e filho a ganhar o prêmio conjuntamente. W.L. Bragg tinha 25 anos de idade, o que faz dele o mais jovem laureado pela Academia Real das Ciências da Suécia.

      Condição de Bragg[editar | editar código-fonte]

      Modelo de Bragg em duas dimensões
      Modelo de Bragg em duas dimensões: A diferença de caminho óptico entre os dois raios é , onde  é a distância entre os planos considerados e , o ângulo de incidência.
      A periodicidade do cristal faz com que haja planos de átomos separados por uma distância fixa nas diferentes direções do espaço. A difração de Bragg ocorre quando a radiação eletromagnética ou ondas de matéria de comprimento de onda comparável à distância entre dois planos de átomos é refletida especularmente por planos consecutivos.
      Nota-se que partículas em movimento, incluindo elétrons, prótons e nêutrons têm um comprimento de onda associado de de Broglie dado por:
       .
      x


      V [R] [MA] =  Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

      X =
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli.
      x
      sistema de transições de estados, e estados  de Graceli, 
      x
      T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D
      Nessa expressão,  é o momento linear da partícula.
      A próxima equação é conhecida como Lei de Bragg. Para que haja uma diferença de fase entre dois raios igual a radianos, é necessária a condição
      x


      V [R] [MA] =  Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

      X =

      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli.
      x
      sistema de transições de estados, e estados  de Graceli, 
      x
      T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D
      onde  é um número natural é o comprimento de onda da radiação incidente,  é a distância entre planos atômicos e  é o ângulo de incidência em relação ao plano considerado. Dessa maneira, existe uma dependência entre o ângulo de incidência e a intensidade da onda refletida. Como cada plano reflete de  a  do total da radiação incidente, há de  a  planos contribuindo para a reflexão total. Se os raios refletidos estão fora de fase, a soma das muitas contribuições (reflexões por planos diferentes) tenderá a zero, de maneira que podem ser observados picos localizados nos ângulos em que a condição de Bragg é satisfeita[3].

      Densidade eletrônica[editar | editar código-fonte]

      Análise de Fourier[editar | editar código-fonte]

      Para melhor compreender o comportamento da onda espalhada, pode ser tomado como modelo um cristal perfeito, formado por uma célula primitiva que se repete no espaço. A descrição matemática do cristal é invariante sob uma translação espacial:
       .
      x


      V [R] [MA] =  Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

      X =
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli.
      x
      sistema de transições de estados, e estados  de Graceli, 
      x
      T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D
      Nessa expressão os  são números inteiros e os vetores  são os vetores associados aos eixos do cristal, cujas magnitudes  são as distâncias entre sítios (pontuais) da rede nas direções . Todas as propriedades locais do cristal, como densidade de momento magnético, concentração de carga ou densidade eletrônica, serão invariantes sob uma translação da forma  para qualquer combinação de [4]
       .
      x


      V [R] [MA] =  Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

      X =
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli.
      x
      sistema de transições de estados, e estados  de Graceli, 
      x
      T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D
      Essa periodicidade permite que se faça uma expansão da densidade eletrônica  em série de Fourier. Considerando primeiro apenas uma componente dimensional, vem:
       .
      x


      V [R] [MA] =  Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

      X =
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli.
      x
      sistema de transições de estados, e estados  de Graceli, 
      x
      T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D
      Nessa expressão  e  são constantes reais e . É imediato que
       .
      x


      V [R] [MA] =  Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

      X =
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli.
      x
      sistema de transições de estados, e estados  de Graceli, 
      x
      T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D
      Um ponto  é um ponto no chamado espaço recíproco do cristal. Os coeficientes da expansão serão tais que apenas os termos que condizem com a periodicidade do cristal no espaço real (das posições) poderão ser diferentes de zero.
      É conveniente escrever a soma como uma exponencial complexa através da relação de Euler:
      Com essa notação, a expansão pode ser escrita como
       .
      x


      V [R] [MA] =  Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

      X =
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli.
      x
      sistema de transições de estados, e estados  de Graceli, 
      x
      T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D
      Nessa expressão o somatório percorre todos os valores inteiros de p. O termo  agora é, em geral, um número complexo e, portanto, é necessário impor uma condição que faça com que  seja uma função real como originalmente. A condição
      faz com que
       ,
      x


      V [R] [MA] =  Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

      X =
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli.
      x
      sistema de transições de estados, e estados  de Graceli, 
      x
      T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D
      que é uma função real.
      Estender o argumento para três dimensões é algo direto:
       .
      x


      V [R] [MA] =  Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

      X =
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli.
      x
      sistema de transições de estados, e estados  de Graceli, 
      x
      T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D
      O somatório triplo foi omitido para preservar a clareza da expressão, mas é importante lembrar que a soma é realizada sobre todos as combinações possíveis de (definido na próxima subseção). Assim, é necessário encontrar um conjunto de vetores  que satisfaçam a relação de invariância por translação .
      Tendo a expressão para a expansão de Fourier para densidade eletrônica, é possível obter os coeficientes da expansão em uma dimensão por meio de
       .
      x


      V [R] [MA] =  Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

      X =
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli.
      x
      sistema de transições de estados, e estados  de Graceli, 
      x
      T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D
      Substituindo a expressão expandida para  na integral acima, vem:
       .
      x


      V [R] [MA] =  Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

      X =
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli.
      x
      sistema de transições de estados, e estados  de Graceli, 
      x
      T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D
      O caso  faz com que o valor da integral seja
       ,
      pois  é um inteiro e . No caso , de maneira que o valor da integral é  e . De maneira semelhante, pode ser invertido o caso tridimensional, obtendo
       .
      x


      V [R] [MA] =  Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

      X =
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli.
      x
      sistema de transições de estados, e estados  de Graceli, 
      x
      T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D
      Nesse caso a integração é realizada sobre uma célula primitiva e  é o volume da mesma.

      Rede recíproca[editar | editar código-fonte]

      Podemos construir, a partir dos vetores da base , a base da rede recíproca[5]
      ou de forma condensada, utilizando o tensor ou símbolo de Levi-Civita,
      Por análise vetorial simples temos
      onde  é o delta de Kronecker.
      Definimos  como sendo um vetor da forma
       ,
      onde os  são números inteiros e os  são a base da rede recíproca. Estamos agora em condições de descrever a periodicidade de  combinando a definição de  e a expansão em coeficientes de Fourier de :
      O termo à direita pode ser escrito como 
      e como todos os  são inteiros e a exponencial de  vezes um número inteiro é um, obtemos o resultado desejado, isto é, a invariância da densidade eletrônica, pois
       .
      x


      V [R] [MA] =  Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

      X =
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli.
      x
      sistema de transições de estados, e estados  de Graceli, 
      x
      T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D

      Amplitude de Espalhamento[editar | editar código-fonte]

      Definimos a amplitude de espalhamento como sendo uma função que depende da densidade eletrônica e dos vetores de ondas incidente e refletido  e , a princípio ondas planas monocromáticas:
       .
      x


      V [R] [MA] =  Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

      X =
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli.
      x
      sistema de transições de estados, e estados  de Graceli, 
      x
      T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D

      As integrais são realizadas sobre o volume do cristal inteiro. Embora tenhamos considerado um modelo onde o cristal é perfeito e infinito, uma amostra macroscópica é aproximadamente infinita se comparadas as suas dimensões com as distâncias interatômicas de uma rede cristalina, da ordem de  metros[6]. O vetor de onda incidente tem a mesma energia que o vetor difratado, conforme a condição de espalhamento elástico considerando a rede cristalina como muito massiva e imóvel. A condição de conservação de energia é

       .
      Definimos o vetor de espalhamento como sendo
       ,
      de maneira que a expressão anterior se torna
      .
      x


      V [R] [MA] =  Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

      X =
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli.
      x
      sistema de transições de estados, e estados  de Graceli, 
      x
      T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D

      Introduzimos agora a expansão em série de Fourier para  nessa expressão para obter

       . 
      x


      V [R] [MA] =  Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

      X =
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli.
      x
      sistema de transições de estados, e estados  de Graceli, 
      x
      T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D

      Quando o vetor de espalhamento é igual a algum vetor da rede recíproca, isto é,
       ,
      a exponencial é nula e
      .
      Quando o vetor de espalhamento difere significantemente de qualquer vetor da rede recíproca, o grande número de oscilações da exponencial devido à variação de  dentro da integral faz com que  rapidamente tenda a zero.
      Podemos reescrever a relação entre os vetores de onda e os vetores da base recíproca utilizando a definição do vetor de espalhamento
       .
      Pela conservação da energia, obtivemos que as magnitudes dos vetores  devem ser iguais. Portanto, tomando o produto escalar dos dois lados:
      x


      V [R] [MA] =  Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

      X =
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli.
      x
      sistema de transições de estados, e estados  de Graceli, 
      x
      T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D

      Portanto,
      .
      ou ainda
       .
      Pelas definições de rede recíproca, é possível mostrar que, se  é um vetor da rede recíproca, então  também é. Isso faz com que seja possível escrever a condição acima como
       .
      As últimas duas equações são formulações equivalentes da condição de difração de Bragg. O espaçamento  entre planos cristalinos paralelos entre si, normais à direção
       ,
      onde h, k, l são inteiros, é dado por
       .
      Combinando a definição de ,

      onde  é o comprimento de onda incidente, com a definição de produto escalar e do módulo de , temos:
       ,
      x


      V [R] [MA] =  Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

      X =
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli.
      x
      sistema de transições de estados, e estados  de Graceli, 
      x
      T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D

      sendo  o ângulo entre os vetores  e  .
      Conforme observamos acima, o vetor  é normal ao plano . Logo, o vetor  também é normal ao plano e o ângulo entre esse vetor e um vetor no plano considerado é . O menor ângulo formado entre o vetor de onda incidente  e o plano é, por análise geométrica, igual a

      Modelo de Bragg em duas dimensões, relação entre os ângulos de incidência em relação ao plano cristalino e ao vetor -G, para obtenção da formulação usual da lei de Bragg
      Modelo de Bragg em duas dimensões: Relação entre os ângulos de incidência e de espalhamento tomando como referência o plano cristalino e a vetor  para obtenção da formulação usual da lei de Bragg. Pela condição de reflexão especular, é possível deduzir que o ângulo entre os vetores de onda incidente e refletido é de 


      ou rearranjando os fatores:
       .
      Podemos reescrever a condição de Bragg utilizando o ângulo entre o vetor incidente e o plano, ao invés de considerar o ângulo entre o vetor incidente e o vetor , utilizando a relação
      x


      V [R] [MA] =  Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

      X =
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli.
      x
      sistema de transições de estados, e estados  de Graceli, 
      x
      T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D


      Assim, recuperamos o resultado obtido pela análise geométrica simples, escrito à maneira usual da formulação da lei de Bragg:
       .
      Aqui,  é o ângulo entre o vetor de onda e o plano cristalino descrito pelos inteiros h, k e l. Existe uma diferença entre essa equação e a primeira equação apresentada aqui como condição de difração, a saber, a multiplicação do lado direito da equação por um número inteiro. Isso se dá pelo fato dos índices de Miller poderem conter um fator comum n, que é eliminado no processo de obtenção dos mesmos. Fisicamente, isso significa que a expressão
       
      x


      V [R] [MA] =  Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

      X =
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli.
      x
      sistema de transições de estados, e estados  de Graceli, 
      x
      T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D

      dá a condição de difração de Bragg para um plano de índices de Miller .

















      EM = ENERGIA E MASSA.

      SDCG = SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI

      EM X SDC G.=

      EM =
      X


      V [R] [MA] =  Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

      X =

      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli.
      x
      sistema de transições de estados, e estados  de Graceli, 
      x
      T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D








       VELOCIDADE ALTERA E MODIFICA ESTRUTURAS, ENERGIAS, FENÔMENOS, INTERAÇÕES, TRANSFORMAÇÕES, TEMPERATURA, MOMENTUM, E OUTROS FENÔMENOS E CONFORME O SISTEMA DECADIMENSIONAL CATEGORIAL GRACELI.




      RELATIVIDADE DO MOVIMENTO E RELATIVIDADE CATEGORIAL GRACELI.

      [VELOCIDADE, ROTAÇÃO E MOVIMENTO ANGULAR]
      V [R] [MA] =  Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

      X =

      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli.
      x
      sistema de transições de estados, e estados  de Graceli, 
      x
      T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D




      mecânica TRANSICIONAL Graceli se fundamenta nas mudanças de fases de estados, fases de isótopos, de estrutura atômica e molecular, [ FASES DE ESTADOS, ESTRUTURAS, ENERGIAS, FENÔMENOS E DIMENSÕES CATEGORIAIS] com variáveis de movimentos, interações, transformações, temperatura, densidade e pressão, e outros, e conforme o sistema decadimensional e categorial Graceli [SDC Graceli]. E FENÔMENOS E ENERGIAS E VARIAÇÕES DE ESTRUTURAS QUE ACONTECEM DENTRO DAS ESTRUTURAS E ENERGIAS.


      um ferromagnético sendo derretido a 300 graus Celsius tem uma realidade física e química, e com variações quântica e orbitais, elétrica, termodinâmicas, mecãnicas, e outros diferentes de um derretimento a 350 graus.

      o mesmo serve para outros materiais e com outras variações levando a um indeterminismo transcendente, categorial e decadimensional Graceli.


      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli.
      x
      sistema de transições de estados, e estados  de Graceli, 
      x
      T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D


      O sistema decadimensional e categorial Graceli pode ser visto como um outro ramo da física e da física, onde envolve condições da matéria e da energia, fenômenos e dimensões, realçados por categorias.

      O único sistema que relaciona dez dimensões relacionadas com a matéria e suas energias, fenômenos e categoria.


      Com isto pode-se dividir a física em quatro grandes fases:

      a clássica, a quântica, a relatividade, e a categorial decadimensional Graceli.




      teoria da relatividade categorial Graceli

      ENERGIA, MASSA, FENÔMENOS, ESPAÇO, TEMPO, INTERAÇÕES, TRANSFORMAÇÕES, CONDUTIVIDADE, EMISSÕES, ABSORÇÕES, DIFRAÇÃO, MOMENTUM.


      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli.
      x
      sistema de transições de estados, e estados  de Graceli, 
      x
      T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D











      NO SISTEMA CATEGORIAL DE GRACELI TODO TIPO DE MOVIMENTO TEM AÇÃO TRANSFORMADORA  [como os outros elementos, como temperatura, radioatividade, luz, e outros],SOBRE ESTRUTURAS E ENERGIAS, TEMPO E ESPAÇO, INÉRCIA E GRAVIDADE, LUZ .


      Estados de Graceli de matéria, energias, momentuns, inércias, e entropias.


      Estados térmico.
      Estado quântico.
      De dilatação.
      De entropia.
      De potencia de entropia e relação com dilatação.
      De magnetismo [correntes, momentum e condutividades]..
      De eletricidade [correntes, momentum e condutividades].
      De condutividade.
      De mometum e fluxos variados.
      De potencial inercial da matéria e energia.
      De transformação.
      De comportamento de cargas e interações com elétrons.
      De emaranhamentos e transemaranhamentos.
      De paridades e transparidades.
      De radiação.
      Radioatividade.
      De radioisótopos.
      De relação entre radioatividade, radiação, eletromagnetismo e termoentropia.
      De capacidade e potencialidade de resistir a pressão, a capacidade de resistir a pressão e transformar em entropia e momentum.

      De resistir à temperaturas.
      E transformar em dilatação, interações entre partículas, energias e campos.
      Estado dos padrões de variações e efeitos variacionais.
      Estado de incerteza dos fenômenos e entre as suas interações.


      E outros estados de matéria, energia, momentum, tipos de inércia [como de inércia potencial de energias magnética, elétrica, forte e fraca, dinâmica, geométrica [côncava, convexa e plana] em sistema.


      E que todos estes tipos de estados tendem a ter ações de uns sobre os outros, formando um aglomerado de fenômenos de efeitos na produção de novas causas. E de efeitos variacionais de uns sobre os outros, ou seja, um sistema integrado.



      Sobre padrões de entropia.

      Mesmo havendo uma desordem, esta desordem segue alguns parâmetros futuros e que dependem de condições dos estados de Graceli, ou seja, a desordem segue alguns padrões e ordens conforme avança e passa por fases e agentes fenomênicos, estruturais e geométricos.


      Porem, a reversibilidade se torna impossível, aumenta a instabilidade e as incertezas de posição, intensidade, variações, efeitos e outros fenômenos conforme as próprias intensidades de dilatações, e agentes e estados envolvidos.


      Levando em consideração que mesmo havendo ordem não é possível a reversibilidade do estado e condições em que se encontravam a energia, matéria, momentum, inércias, dimensões, e outros agentes.


      A temperatura pode voltar ao seu lugar e ao seu ponto inicial, mas não as estruturas das partículas, as intensidades infinitésimas de padrões de energias, e nem o grau de oscilações que a energias, as interações, as transformações que passam estas partículas e suas energias, estruturas e interações, e as interações e intensidades de grau de variação de cada agente.


      Porem, a desordem é temporal, ou seja, com o passar do tempo outras ordens e padrões se afirmarão.


      Sendo que também a entropia varia conforme intensidade de instabilidade por tempo. E tempo por intensidade de instabilidade.


      Assim, segue efeitos variacionais e de incertezas por instabilidade de energia adicionada, e de tempo.


      Ou seja, uma grande instabilidade e desordem em pouco tempo vai levar a uma grande e instável por mais tempo uma entropia.


      Do que um grande tempo com pequena intensidade de instabilidade e energia adicionada num sistema ou numa variação térmica.


      Ou mesmo numa variação eletromagnética, ou mesmo na condutividade.


      Princípio tempo instabilidade de Graceli.

      Assim, a desordem acaba por encontrar uma ordem se não acontecer nenhuma instabilidade novamente. Pois, as partículas e energias tendem a se reorganizar novamente conforme o passar do tempo,  e esta reorganização segue um efeito progressivo em relação à desordem e tempo. Como os vistos acima.


      Ou seja, aquela organização anterior não vai mais acontecer, pois, segue o princípio da irreversibilidade, mas outras organizações se formarão conforme avança o tempo de estabilidade.


      as dimensões categorias podem ser divididas em cinco formas diversificadas.

      tipos, níveis, potenciais, tempo de ação, especificidades de transições de energias, de fenômenos, de estados de energias, físicos [estruturais], de fenômenos, estados quântico, e outros.



      paradox of the system of ten dimensions and categories of Graceli.



      a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.



      that is, categories ground the variables of phenomena and their interactions and transformations.



      and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.



      but structures are related to transitions of physical states, quantum, energies, phenomena, and others.



      as well as transitions of energies, phenomena, categories and dimensions.

      paradoxo do sistema de dez dimensões e categorias de Graceli.

      um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.

      ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.

      e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.

      mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.

      como também transições de energias, fenômenos, categorias e dimensões.







       = entropia reversível

      postulado categorial e decadimensional Graceli.

      TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.


      todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
      matriz categorial Graceli.

      T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D


      1] Cosmic space.
      2] Cosmic and quantum time.
      3] Structures.
      4] Energy.
      5] Phenomena.
      6] Potential.
      7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
      8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
      9] thermal specificity, other energies, and structure phenomena, and phase transitions.
      10] action time specificity in physical and quantum processes.




      Sistema decadimensional Graceli.

      1]Espaço cósmico.
      2]Tempo cósmico  e quântico.
      3]Estruturas.[isótopos, estrutura eletrônica, elementos químicos, amorfos e cristalinos, e, outros.
      4]Energias.
      5]Fenômenos.
      6]Potenciais., e potenciais de campos, de energias, de transições de estruturas e estados físicos, quãntico,  e estados de fenômenos e estados de transições, transformações e decaimentos.
      7]Transições de fases de estados físicos [amorfos e cristalinos] e estados de energias e fenômenos de Graceli.
      8]Tipos e níveis de magnetismo [em paramagnéticos, diamagnético, ferromagnéticos] e eletricidade, radioatividade [fissões e fusões], e luz [laser, maser, incandescências, fluorescências, fosforescências, e outros.
      9] especificidade térmica, de outras energias, e fenômenos das estruturas, e transições de fases.
      10] especificidade de tempo de ações em processos físicos e quântico.


      T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D


      Matriz categorial de Graceli.


      T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               Dl


      Tipos, níveis, potenciais, tempo de ação, temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.

      [estruturas: isótopos, partículas, amorfos e cristalinos, paramagnéticos, dia, ferromagnéticos, e estados [físicos, quântico, de energias, de fenômenos, de transições, de interações, transformações e decaimentos, emissões e absorções, eletrostático, condutividade e fluidez]].
      trans-intermecânica de supercondutividade no sistema categorial de Graceli.

      EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]

      p it = potentials of interactions and transformations.
      Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.

      h e = quantum index and speed of light.

      [pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..


      EPG = GRACELI POTENTIAL STATUS.

      [pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]

      , [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].

      quinta-feira, 16 de maio de 2019





      fórmula de Rydberg (fórmula de Rydberg-Ritz) ou equação de Rydberg é utilizada em física atômica para determinar todo o espectro da luz emitida pelo hidrogênio, posteriormente estendida para uso com qualquer elemento pelo uso do princípio de combinação de Rydberg-Ritz.[1][2]
      O espectro é o conjunto de comprimentos de onda dos fótons emitidos quando o elétron pula entre níveis de energia discretos, "camadas" ao redor do átomo de um certo elemento químico. A descoberta posteriormente promoveu motivação para a criação da física quântica.[3]
      A fórmula foi inventada pelo físico sueco Johannes Rydberg e apresentada em 5 de Novembro de 1888.

        Fórmula de Rydberg para o hidrogênio[editar | editar código-fonte]

        x
        x

        EM = ENERGIA E MASSA.

        SDCG = SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI


        EM X SDC G.=




        EM =
        X


        V [R] [MA] =  Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

        X =

        ΤDCG
        X
        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli.
        x
        sistema de transições de estados, e estados  de Graceli, 
        x
        T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D
        Onde
         é o comprimento de onda da luz emitida no vácuo,[1]
         é a constante de Rydberg para o hidrogênio,[4]
         and  são inteiros tais que .
        Deixando  igual a 1 e fazendo  percorrer de 2 até o infinito, as linhas de espectro conhecidas como série de Lyman convergem em 91 nm. Da mesma maneira:
        NomeConverge para
        1Série de Lyman91 nm
        2Série de Balmer365 nm
        3Série de Paschen821 nm
        4Série de Brackett1459 nm
        5Série de Pfund2280 nm
        6Série de Humphreys3283 nm
        Apenas a série de Balmer está na faixa visível do espectro luminoso. A série de Lyman está na faixa ultravioleta, e as séries de Paschen, Brackett, Pfund, e Humphreys, na infravermelha.

        Fórmula de Rydberg para qualquer elemento semelhante ao hidrogênio[editar | editar código-fonte]

        A fórmula acima pode ser estendida para qualquer elemento químico semelhante ao hidrogênio.[1][4]
        x
        x

        EM = ENERGIA E MASSA.

        SDCG = SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI


        EM X SDC G.=




        EM =
        X


        V [R] [MA] =  Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

        X =

        ΤDCG
        X
        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli.
        x
        sistema de transições de estados, e estados  de Graceli, 
        x
        T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D
        onde
         é o comprimento de onda da luz emitida no vácuo;
         é a constante de Rydberg para esse elemento;
         é o número atômico;
         e  são inteiros tais que .
        É importante notar que esta fórmula pode ser aplicada apenas para elementos semelhantes ao hidrogênio, também chamados átomos hidrogênicos, isto é,.átomos com apenas um elétron na orbital mais externo. Exemplos destes incluem o  etc.[5]











        carga do elétron é exatamente -1,602 176 634 × 10−19 C,[1] que é o mesmo valor da carga do próton, porém de sinal contrário.
        x

        EM = ENERGIA E MASSA.

        SDCG = SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI


        EM X SDC G.=




        EM =
        X


        V [R] [MA] =  Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

        X =


        ΤDCG
        X
        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli.
        x
        sistema de transições de estados, e estados  de Graceli, 
        x
        T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D

        Histórico[editar | editar código-fonte]

        Foi medido primeiramente na famosa experiência da gota de óleo de Robert Andrews Millikan em 1909; a carga do elétron é considerada indivisível. O grande mérito de Millikan foi usar em sua experiência gotas de óleo, uma vez que outros experimentos semelhantes já haviam sido feitos porém com gotas de água que evaporam (muito) mais rápido do que gotas de óleo, alterando rapidamente a massa da partícula (gota) analisada, o que não acontece com a gota de óleo.[2]
        Acredita-se que os quarks, propostos primeiramente nos anos 1960, tenham cargas elétricas fracionárias (nas unidades de e/3), mas para existir somente nas partículas com uma carga inteira. Nunca foram detectados quarks sozinhos. Em 1982 Robert Laughlin tentou explicar o valor fracionário usando o efeito Hall, predizendo a existência de quase partículas fracionárias carregadas. Em 1995, a carga fracionária de quase partículas de Laughlin foi medida diretamente em um eletrômetro na universidade Stony Brook UniversityNova Iorque. Em 1997, dois grupos de físicos no Weizmann Institute of Science da ciência em RehovotIsrael, e no Commissariat à l'Énergie Atomique perto de Paris, reivindicaram ter detectado tais quase partículas carregadas em uma corrente elétrica.












        EM = ENERGIA E MASSA.

        SDCG = SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI


        EM X SDC G.=




        EM =
        X


        V [R] [MA] =  Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

        X =


        ΤDCG
        X
        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli.
        x
        sistema de transições de estados, e estados  de Graceli, 
        x
        T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D








         VELOCIDADE ALTERA E MODIFICA ESTRUTURAS, ENERGIAS, FENÔMENOS, INTERAÇÕES, TRANSFORMAÇÕES, TEMPERATURA, MOMENTUM, E OUTROS FENÔMENOS E CONFORME O SISTEMA DECADIMENSIONAL CATEGORIAL GRACELI.




        RELATIVIDADE DO MOVIMENTO E RELATIVIDADE CATEGORIAL GRACELI.

        [VELOCIDADE, ROTAÇÃO E MOVIMENTO ANGULAR]
        V [R] [MA] =  Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

        X =

        ΤDCG
        X
        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli.
        x
        sistema de transições de estados, e estados  de Graceli, 
        x
        T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D




        mecânica TRANSICIONAL Graceli se fundamenta nas mudanças de fases de estados, fases de isótopos, de estrutura atômica e molecular, [ FASES DE ESTADOS, ESTRUTURAS, ENERGIAS, FENÔMENOS E DIMENSÕES CATEGORIAIS] com variáveis de movimentos, interações, transformações, temperatura, densidade e pressão, e outros, e conforme o sistema decadimensional e categorial Graceli [SDC Graceli]. E FENÔMENOS E ENERGIAS E VARIAÇÕES DE ESTRUTURAS QUE ACONTECEM DENTRO DAS ESTRUTURAS E ENERGIAS.


        um ferromagnético sendo derretido a 300 graus Celsius tem uma realidade física e química, e com variações quântica e orbitais, elétrica, termodinâmicas, mecãnicas, e outros diferentes de um derretimento a 350 graus.

        o mesmo serve para outros materiais e com outras variações levando a um indeterminismo transcendente, categorial e decadimensional Graceli.


        ΤDCG
        X
        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli.
        x
        sistema de transições de estados, e estados  de Graceli, 
        x
        T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D


        O sistema decadimensional e categorial Graceli pode ser visto como um outro ramo da física e da física, onde envolve condições da matéria e da energia, fenômenos e dimensões, realçados por categorias.

        O único sistema que relaciona dez dimensões relacionadas com a matéria e suas energias, fenômenos e categoria.


        Com isto pode-se dividir a física em quatro grandes fases:

        a clássica, a quântica, a relatividade, e a categorial decadimensional Graceli.




        teoria da relatividade categorial Graceli

        ENERGIA, MASSA, FENÔMENOS, ESPAÇO, TEMPO, INTERAÇÕES, TRANSFORMAÇÕES, CONDUTIVIDADE, EMISSÕES, ABSORÇÕES, DIFRAÇÃO, MOMENTUM.


        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli.
        x
        sistema de transições de estados, e estados  de Graceli, 
        x
        T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D











        NO SISTEMA CATEGORIAL DE GRACELI TODO TIPO DE MOVIMENTO TEM AÇÃO TRANSFORMADORA  [como os outros elementos, como temperatura, radioatividade, luz, e outros],SOBRE ESTRUTURAS E ENERGIAS, TEMPO E ESPAÇO, INÉRCIA E GRAVIDADE, LUZ .


        Estados de Graceli de matéria, energias, momentuns, inércias, e entropias.


        Estados térmico.
        Estado quântico.
        De dilatação.
        De entropia.
        De potencia de entropia e relação com dilatação.
        De magnetismo [correntes, momentum e condutividades]..
        De eletricidade [correntes, momentum e condutividades].
        De condutividade.
        De mometum e fluxos variados.
        De potencial inercial da matéria e energia.
        De transformação.
        De comportamento de cargas e interações com elétrons.
        De emaranhamentos e transemaranhamentos.
        De paridades e transparidades.
        De radiação.
        Radioatividade.
        De radioisótopos.
        De relação entre radioatividade, radiação, eletromagnetismo e termoentropia.
        De capacidade e potencialidade de resistir a pressão, a capacidade de resistir a pressão e transformar em entropia e momentum.

        De resistir à temperaturas.
        E transformar em dilatação, interações entre partículas, energias e campos.
        Estado dos padrões de variações e efeitos variacionais.
        Estado de incerteza dos fenômenos e entre as suas interações.


        E outros estados de matéria, energia, momentum, tipos de inércia [como de inércia potencial de energias magnética, elétrica, forte e fraca, dinâmica, geométrica [côncava, convexa e plana] em sistema.


        E que todos estes tipos de estados tendem a ter ações de uns sobre os outros, formando um aglomerado de fenômenos de efeitos na produção de novas causas. E de efeitos variacionais de uns sobre os outros, ou seja, um sistema integrado.



        Sobre padrões de entropia.

        Mesmo havendo uma desordem, esta desordem segue alguns parâmetros futuros e que dependem de condições dos estados de Graceli, ou seja, a desordem segue alguns padrões e ordens conforme avança e passa por fases e agentes fenomênicos, estruturais e geométricos.


        Porem, a reversibilidade se torna impossível, aumenta a instabilidade e as incertezas de posição, intensidade, variações, efeitos e outros fenômenos conforme as próprias intensidades de dilatações, e agentes e estados envolvidos.


        Levando em consideração que mesmo havendo ordem não é possível a reversibilidade do estado e condições em que se encontravam a energia, matéria, momentum, inércias, dimensões, e outros agentes.


        A temperatura pode voltar ao seu lugar e ao seu ponto inicial, mas não as estruturas das partículas, as intensidades infinitésimas de padrões de energias, e nem o grau de oscilações que a energias, as interações, as transformações que passam estas partículas e suas energias, estruturas e interações, e as interações e intensidades de grau de variação de cada agente.


        Porem, a desordem é temporal, ou seja, com o passar do tempo outras ordens e padrões se afirmarão.


        Sendo que também a entropia varia conforme intensidade de instabilidade por tempo. E tempo por intensidade de instabilidade.


        Assim, segue efeitos variacionais e de incertezas por instabilidade de energia adicionada, e de tempo.


        Ou seja, uma grande instabilidade e desordem em pouco tempo vai levar a uma grande e instável por mais tempo uma entropia.


        Do que um grande tempo com pequena intensidade de instabilidade e energia adicionada num sistema ou numa variação térmica.


        Ou mesmo numa variação eletromagnética, ou mesmo na condutividade.


        Princípio tempo instabilidade de Graceli.

        Assim, a desordem acaba por encontrar uma ordem se não acontecer nenhuma instabilidade novamente. Pois, as partículas e energias tendem a se reorganizar novamente conforme o passar do tempo,  e esta reorganização segue um efeito progressivo em relação à desordem e tempo. Como os vistos acima.


        Ou seja, aquela organização anterior não vai mais acontecer, pois, segue o princípio da irreversibilidade, mas outras organizações se formarão conforme avança o tempo de estabilidade.


        as dimensões categorias podem ser divididas em cinco formas diversificadas.

        tipos, níveis, potenciais, tempo de ação, especificidades de transições de energias, de fenômenos, de estados de energias, físicos [estruturais], de fenômenos, estados quântico, e outros.



        paradox of the system of ten dimensions and categories of Graceli.



        a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.



        that is, categories ground the variables of phenomena and their interactions and transformations.



        and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.



        but structures are related to transitions of physical states, quantum, energies, phenomena, and others.



        as well as transitions of energies, phenomena, categories and dimensions.

        paradoxo do sistema de dez dimensões e categorias de Graceli.

        um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.

        ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.

        e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.

        mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.

        como também transições de energias, fenômenos, categorias e dimensões.







         = entropia reversível

        postulado categorial e decadimensional Graceli.

        TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.


        todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
        matriz categorial Graceli.

        T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D


        1] Cosmic space.
        2] Cosmic and quantum time.
        3] Structures.
        4] Energy.
        5] Phenomena.
        6] Potential.
        7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
        8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
        9] thermal specificity, other energies, and structure phenomena, and phase transitions.
        10] action time specificity in physical and quantum processes.




        Sistema decadimensional Graceli.

        1]Espaço cósmico.
        2]Tempo cósmico  e quântico.
        3]Estruturas.[isótopos, estrutura eletrônica, elementos químicos, amorfos e cristalinos, e, outros.
        4]Energias.
        5]Fenômenos.
        6]Potenciais., e potenciais de campos, de energias, de transições de estruturas e estados físicos, quãntico,  e estados de fenômenos e estados de transições, transformações e decaimentos.
        7]Transições de fases de estados físicos [amorfos e cristalinos] e estados de energias e fenômenos de Graceli.
        8]Tipos e níveis de magnetismo [em paramagnéticos, diamagnético, ferromagnéticos] e eletricidade, radioatividade [fissões e fusões], e luz [laser, maser, incandescências, fluorescências, fosforescências, e outros.
        9] especificidade térmica, de outras energias, e fenômenos das estruturas, e transições de fases.
        10] especificidade de tempo de ações em processos físicos e quântico.


        T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D


        Matriz categorial de Graceli.


        T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 Dl


        Tipos, níveis, potenciais, tempo de ação, temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.

        [estruturas: isótopos, partículas, amorfos e cristalinos, paramagnéticos, dia, ferromagnéticos, e estados [físicos, quântico, de energias, de fenômenos, de transições, de interações, transformações e decaimentos, emissões e absorções, eletrostático, condutividade e fluidez]].
        trans-intermecânica de supercondutividade no sistema categorial de Graceli.

        EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]

        p it = potentials of interactions and transformations.
        Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.

        h e = quantum index and speed of light.

        [pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..


        EPG = GRACELI POTENTIAL STATUS.

        [pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]

        , [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].

        quarta-feira, 15 de maio de 2019



        1]A CONSTANTE COSMOLÓGICA DE EINSTEIN.  SOBRE UM SUPOSTO UNIVERSO ESTACIONÁRIO.

        2]A LEI DA EVOLUÇÃO POR SELEÇÃO NATURAL, ONDE DEVERIA SER POR CAPACIDADES VITAIS E ADAPTATIVAS. [VER BIOLOGIA DE GRACELI].

        3]O TEOREMA DE PITÁGORAS, QUE FUNCIONA SÓ PARA TRIÂNGULOS DE LADOS DIFERENTES, E NÃO PARA EQUILÁTEROS.


        4]A LEI DA GRAVITAÇÃO DE NEWTON, ONDE O QUADRADO OU INVERSO DO QUADRADO DA DISTÂNCIA LEVA A RESULTADOS EXPONENCIAIS, E NÃO A PROGRESSÕES DECRESCENTES [ QUE É O QUE ACONTECE NA REALIDADE COM A TRANSLAÇÃO DOS ASTROS].

        5]A LEI DE COULOMB PARA INVERSO DO QUADRADO DA DISTÂNCIAS DAS CARGAS, ERRA NO MESMO DO DA GRAVITAÇÃO DE NEWTON. POIS SE TEM UM CRESCIMENTO EXPONENCIAL.

        6]COMO TAMBÉM VARIA CONFORME O SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.

        7] A VARIAÇÃO DO TEMPO PELA VELOCIDADE [ RELATIVIDADE RESTRITA], POIS O TEMPO NÃO EXISTE COMO COISA EM SI.

        8] E=mc² , onde c ao quadrado passa a ter o valor de 90.000.000.000, ou seja, isto é impossível da velocidade da luz ter uma velocidade de noventa bilhões de KM / S.




        Lei de Coulomb é uma lei da física que descreve a interação eletrostática entre partículas eletricamente carregadas. Foi formulada e publicada pela primeira vez em 1783 pelo físico francês Charles Augustin de Coulomb e foi essencial para o desenvolvimento do estudo da Eletricidade.[1]
        Esta lei estabelece que o módulo da força entre duas cargas elétricas puntiformes (q1 e q2) é diretamente proporcional ao produto dos valores absolutos (módulos) das duas cargas e inversamente proporcional ao quadrado da distância r entre eles. Esta força pode ser atrativa ou repulsiva dependendo do sinal das cargas. É atrativa se as cargas tiverem sinais opostos. É repulsiva se as cargas tiverem o mesmo sinal.[2][3]
        Diagrama que descreve o mecanismo básico da lei de Coulomb. As cargas iguais se repelem e as cargas opostas se atraem
        Após detalhadas medidas, utilizando uma balança de torção, Coulomb concluiu que esta força é completamente descrita pela seguinte equação:[1]
        ,
        X
        [VELOCIDADE, ROTAÇÃO E MOVIMENTO ANGULAR]
        V [R] [MA] =  Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

        X =

        ΤDCG
        X
        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli.
        x
        sistema de transições de estados, e estados  de Graceli, 
        x
        T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D
        em que:
         é a força, em Newtons (N);
         C2 N−1 m−2 (ou F m−1) é a constante elétrica,
        r é a distância entre as duas cargas pontuais, em metros (m) e
        q1 e q2, os respectivos valores das cargas, em Coulombs (C).
         é o versor que indica a direção em que aponta a força eléctrica.[1]
        Por vezes substitui-se o fator  por
        k, a constante de Coulomb, com k  N·m²/C².
        Assim, a força elétrica, fica expressa na forma:
        ,
        X
        [VELOCIDADE, ROTAÇÃO E MOVIMENTO ANGULAR]
        V [R] [MA] =  Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

        X =

        ΤDCG
        X
        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli.
        x
        sistema de transições de estados, e estados  de Graceli, 
        x
        T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D
        A notação anterior é uma notação vectorial compacta, onde não é especificado qualquer sistema de coordenadas.
        Se a carga 1 estiver na origem e a carga 2 no ponto com coordenadas cartesianas(x,y,z) a força de Coulomb toma a forma:
        ,
        X
        [VELOCIDADE, ROTAÇÃO E MOVIMENTO ANGULAR]
        V [R] [MA] =  Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

        X =

        ΤDCG
        X
        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli.
        x
        sistema de transições de estados, e estados  de Graceli, 
        x
        T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D
        Como a carga de um Coulomb (1 C) é muito grande, costuma-se usar submúltiplos dessa unidade. Assim, temos:
        1 milicoulomb = 
        1 microcoulomb = 
        1 nanocoulomb = 
        1 picocoulomb = 







         VELOCIDADE ALTERA E MODIFICA ESTRUTURAS, ENERGIAS, FENÔMENOS, INTERAÇÕES, TRANSFORMAÇÕES, TEMPERATURA, MOMENTUM, E OUTROS FENÔMENOS E CONFORME O SISTEMA DECADIMENSIONAL CATEGORIAL GRACELI.




        RELATIVIDADE DO MOVIMENTO E RELATIVIDADE CATEGORIAL GRACELI.

        [VELOCIDADE, ROTAÇÃO E MOVIMENTO ANGULAR]
        V [R] [MA] =  Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

        X =

        ΤDCG
        X
        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli.
        x
        sistema de transições de estados, e estados  de Graceli, 
        x
        T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D


















        mecânica TRANSICIONAL Graceli se fundamenta nas mudanças de fases de estados, fases de isótopos, de estrutura atômica e molecular, [ FASES DE ESTADOS, ESTRUTURAS, ENERGIAS, FENÔMENOS E DIMENSÕES CATEGORIAIS] com variáveis de movimentos, interações, transformações, temperatura, densidade e pressão, e outros, e conforme o sistema decadimensional e categorial Graceli [SDC Graceli]. E FENÔMENOS E ENERGIAS E VARIAÇÕES DE ESTRUTURAS QUE ACONTECEM DENTRO DAS ESTRUTURAS E ENERGIAS.


        um ferromagnético sendo derretido a 300 graus Celsius tem uma realidade física e química, e com variações quântica e orbitais, elétrica, termodinâmicas, mecãnicas, e outros diferentes de um derretimento a 350 graus.

        o mesmo serve para outros materiais e com outras variações levando a um indeterminismo transcendente, categorial e decadimensional Graceli.


        ΤDCG
        X
        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli.
        x
        sistema de transições de estados, e estados  de Graceli, 
        x
        T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D


        O sistema decadimensional e categorial Graceli pode ser visto como um outro ramo da física e da física, onde envolve condições da matéria e da energia, fenômenos e dimensões, realçados por categorias.

        O único sistema que relaciona dez dimensões relacionadas com a matéria e suas energias, fenômenos e categoria.


        Com isto pode-se dividir a física em quatro grandes fases:

        a clássica, a quântica, a relatividade, e a categorial decadimensional Graceli.




        teoria da relatividade categorial Graceli

        ENERGIA, MASSA, FENÔMENOS, ESPAÇO, TEMPO, INTERAÇÕES, TRANSFORMAÇÕES, CONDUTIVIDADE, EMISSÕES, ABSORÇÕES, DIFRAÇÃO, MOMENTUM.


        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli.
        x
        sistema de transições de estados, e estados  de Graceli, 
        x
        T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D











        NO SISTEMA CATEGORIAL DE GRACELI TODO TIPO DE MOVIMENTO TEM AÇÃO TRANSFORMADORA  [como os outros elementos, como temperatura, radioatividade, luz, e outros],SOBRE ESTRUTURAS E ENERGIAS, TEMPO E ESPAÇO, INÉRCIA E GRAVIDADE, LUZ .


        Estados de Graceli de matéria, energias, momentuns, inércias, e entropias.


        Estados térmico.
        Estado quântico.
        De dilatação.
        De entropia.
        De potencia de entropia e relação com dilatação.
        De magnetismo [correntes, momentum e condutividades]..
        De eletricidade [correntes, momentum e condutividades].
        De condutividade.
        De mometum e fluxos variados.
        De potencial inercial da matéria e energia.
        De transformação.
        De comportamento de cargas e interações com elétrons.
        De emaranhamentos e transemaranhamentos.
        De paridades e transparidades.
        De radiação.
        Radioatividade.
        De radioisótopos.
        De relação entre radioatividade, radiação, eletromagnetismo e termoentropia.
        De capacidade e potencialidade de resistir a pressão, a capacidade de resistir a pressão e transformar em entropia e momentum.

        De resistir à temperaturas.
        E transformar em dilatação, interações entre partículas, energias e campos.
        Estado dos padrões de variações e efeitos variacionais.
        Estado de incerteza dos fenômenos e entre as suas interações.


        E outros estados de matéria, energia, momentum, tipos de inércia [como de inércia potencial de energias magnética, elétrica, forte e fraca, dinâmica, geométrica [côncava, convexa e plana] em sistema.


        E que todos estes tipos de estados tendem a ter ações de uns sobre os outros, formando um aglomerado de fenômenos de efeitos na produção de novas causas. E de efeitos variacionais de uns sobre os outros, ou seja, um sistema integrado.



        Sobre padrões de entropia.

        Mesmo havendo uma desordem, esta desordem segue alguns parâmetros futuros e que dependem de condições dos estados de Graceli, ou seja, a desordem segue alguns padrões e ordens conforme avança e passa por fases e agentes fenomênicos, estruturais e geométricos.


        Porem, a reversibilidade se torna impossível, aumenta a instabilidade e as incertezas de posição, intensidade, variações, efeitos e outros fenômenos conforme as próprias intensidades de dilatações, e agentes e estados envolvidos.


        Levando em consideração que mesmo havendo ordem não é possível a reversibilidade do estado e condições em que se encontravam a energia, matéria, momentum, inércias, dimensões, e outros agentes.


        A temperatura pode voltar ao seu lugar e ao seu ponto inicial, mas não as estruturas das partículas, as intensidades infinitésimas de padrões de energias, e nem o grau de oscilações que a energias, as interações, as transformações que passam estas partículas e suas energias, estruturas e interações, e as interações e intensidades de grau de variação de cada agente.


        Porem, a desordem é temporal, ou seja, com o passar do tempo outras ordens e padrões se afirmarão.


        Sendo que também a entropia varia conforme intensidade de instabilidade por tempo. E tempo por intensidade de instabilidade.


        Assim, segue efeitos variacionais e de incertezas por instabilidade de energia adicionada, e de tempo.


        Ou seja, uma grande instabilidade e desordem em pouco tempo vai levar a uma grande e instável por mais tempo uma entropia.


        Do que um grande tempo com pequena intensidade de instabilidade e energia adicionada num sistema ou numa variação térmica.


        Ou mesmo numa variação eletromagnética, ou mesmo na condutividade.


        Princípio tempo instabilidade de Graceli.

        Assim, a desordem acaba por encontrar uma ordem se não acontecer nenhuma instabilidade novamente. Pois, as partículas e energias tendem a se reorganizar novamente conforme o passar do tempo,  e esta reorganização segue um efeito progressivo em relação à desordem e tempo. Como os vistos acima.


        Ou seja, aquela organização anterior não vai mais acontecer, pois, segue o princípio da irreversibilidade, mas outras organizações se formarão conforme avança o tempo de estabilidade.


        as dimensões categorias podem ser divididas em cinco formas diversificadas.

        tipos, níveis, potenciais, tempo de ação, especificidades de transições de energias, de fenômenos, de estados de energias, físicos [estruturais], de fenômenos, estados quântico, e outros.



        paradox of the system of ten dimensions and categories of Graceli.



        a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.



        that is, categories ground the variables of phenomena and their interactions and transformations.



        and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.



        but structures are related to transitions of physical states, quantum, energies, phenomena, and others.



        as well as transitions of energies, phenomena, categories and dimensions.

        paradoxo do sistema de dez dimensões e categorias de Graceli.

        um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.

        ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.

        e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.

        mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.

        como também transições de energias, fenômenos, categorias e dimensões.







         = entropia reversível

        postulado categorial e decadimensional Graceli.

        TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.


        todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
        matriz categorial Graceli.

        T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D


        1] Cosmic space.
        2] Cosmic and quantum time.
        3] Structures.
        4] Energy.
        5] Phenomena.
        6] Potential.
        7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
        8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
        9] thermal specificity, other energies, and structure phenomena, and phase transitions.
        10] action time specificity in physical and quantum processes.




        Sistema decadimensional Graceli.

        1]Espaço cósmico.
        2]Tempo cósmico  e quântico.
        3]Estruturas.[isótopos, estrutura eletrônica, elementos químicos, amorfos e cristalinos, e, outros.
        4]Energias.
        5]Fenômenos.
        6]Potenciais., e potenciais de campos, de energias, de transições de estruturas e estados físicos, quãntico,  e estados de fenômenos e estados de transições, transformações e decaimentos.
        7]Transições de fases de estados físicos [amorfos e cristalinos] e estados de energias e fenômenos de Graceli.
        8]Tipos e níveis de magnetismo [em paramagnéticos, diamagnético, ferromagnéticos] e eletricidade, radioatividade [fissões e fusões], e luz [laser, maser, incandescências, fluorescências, fosforescências, e outros.
        9] especificidade térmica, de outras energias, e fenômenos das estruturas, e transições de fases.
        10] especificidade de tempo de ações em processos físicos e quântico.


        T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D


        Matriz categorial de Graceli.


        T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 Dl


        Tipos, níveis, potenciais, tempo de ação, temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.

        [estruturas: isótopos, partículas, amorfos e cristalinos, paramagnéticos, dia, ferromagnéticos, e estados [físicos, quântico, de energias, de fenômenos, de transições, de interações, transformações e decaimentos, emissões e absorções, eletrostático, condutividade e fluidez]].
        trans-intermecânica de supercondutividade no sistema categorial de Graceli.

        EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]

        p it = potentials of interactions and transformations.
        Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.

        h e = quantum index and speed of light.

        [pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..


        EPG = GRACELI POTENTIAL STATUS.

        [pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]

        , [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].

        segunda-feira, 13 de maio de 2019







        OS ESTADOS GRACELI DE ABSORÇÕES, EMISSÕES, TRANSFORMAÇÕES, INTERAÇÕES, TUNELAMENTOS, ADSORÇÕES, EXPLOSÕES,

        é capacidade dos materiais conforme o SDC GRACELI de absorver impactos, radiações, emitir partículas e ondas, e explosão.







         VELOCIDADE ALTERA E MODIFICA ESTRUTURAS, ENERGIAS, FENÔMENOS, INTERAÇÕES, TRANSFORMAÇÕES, TEMPERATURA, MOMENTUM, E OUTROS FENÔMENOS E CONFORME O SISTEMA DECADIMENSIONAL CATEGORIAL GRACELI.




        RELATIVIDADE DO MOVIMENTO E RELATIVIDADE CATEGORIAL GRACELI.

        [VELOCIDADE, ROTAÇÃO E MOVIMENTO ANGULAR]
        V [R] [MA] =  Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

        X =

        ΤDCG
        X
        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli.
        x
        sistema de transições de estados, e estados  de Graceli, 
        x
        T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D


















        mecânica TRANSICIONAL Graceli se fundamenta nas mudanças de fases de estados, fases de isótopos, de estrutura atômica e molecular, [ FASES DE ESTADOS, ESTRUTURAS, ENERGIAS, FENÔMENOS E DIMENSÕES CATEGORIAIS] com variáveis de movimentos, interações, transformações, temperatura, densidade e pressão, e outros, e conforme o sistema decadimensional e categorial Graceli [SDC Graceli]. E FENÔMENOS E ENERGIAS E VARIAÇÕES DE ESTRUTURAS QUE ACONTECEM DENTRO DAS ESTRUTURAS E ENERGIAS.


        um ferromagnético sendo derretido a 300 graus Celsius tem uma realidade física e química, e com variações quântica e orbitais, elétrica, termodinâmicas, mecãnicas, e outros diferentes de um derretimento a 350 graus.

        o mesmo serve para outros materiais e com outras variações levando a um indeterminismo transcendente, categorial e decadimensional Graceli.


        ΤDCG
        X
        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli.
        x
        sistema de transições de estados, e estados  de Graceli, 
        x
        T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D


        O sistema decadimensional e categorial Graceli pode ser visto como um outro ramo da física e da física, onde envolve condições da matéria e da energia, fenômenos e dimensões, realçados por categorias.

        O único sistema que relaciona dez dimensões relacionadas com a matéria e suas energias, fenômenos e categoria.


        Com isto pode-se dividir a física em quatro grandes fases:

        a clássica, a quântica, a relatividade, e a categorial decadimensional Graceli.




        teoria da relatividade categorial Graceli

        ENERGIA, MASSA, FENÔMENOS, ESPAÇO, TEMPO, INTERAÇÕES, TRANSFORMAÇÕES, CONDUTIVIDADE, EMISSÕES, ABSORÇÕES, DIFRAÇÃO, MOMENTUM.


        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli.
        x
        sistema de transições de estados, e estados  de Graceli, 
        x
        T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D











        NO SISTEMA CATEGORIAL DE GRACELI TODO TIPO DE MOVIMENTO TEM AÇÃO TRANSFORMADORA  [como os outros elementos, como temperatura, radioatividade, luz, e outros],SOBRE ESTRUTURAS E ENERGIAS, TEMPO E ESPAÇO, INÉRCIA E GRAVIDADE, LUZ .


        Estados de Graceli de matéria, energias, momentuns, inércias, e entropias.


        Estados térmico.
        Estado quântico.
        De dilatação.
        De entropia.
        De potencia de entropia e relação com dilatação.
        De magnetismo [correntes, momentum e condutividades]..
        De eletricidade [correntes, momentum e condutividades].
        De condutividade.
        De mometum e fluxos variados.
        De potencial inercial da matéria e energia.
        De transformação.
        De comportamento de cargas e interações com elétrons.
        De emaranhamentos e transemaranhamentos.
        De paridades e transparidades.
        De radiação.
        Radioatividade.
        De radioisótopos.
        De relação entre radioatividade, radiação, eletromagnetismo e termoentropia.
        De capacidade e potencialidade de resistir a pressão, a capacidade de resistir a pressão e transformar em entropia e momentum.

        De resistir à temperaturas.
        E transformar em dilatação, interações entre partículas, energias e campos.
        Estado dos padrões de variações e efeitos variacionais.
        Estado de incerteza dos fenômenos e entre as suas interações.


        E outros estados de matéria, energia, momentum, tipos de inércia [como de inércia potencial de energias magnética, elétrica, forte e fraca, dinâmica, geométrica [côncava, convexa e plana] em sistema.


        E que todos estes tipos de estados tendem a ter ações de uns sobre os outros, formando um aglomerado de fenômenos de efeitos na produção de novas causas. E de efeitos variacionais de uns sobre os outros, ou seja, um sistema integrado.



        Sobre padrões de entropia.

        Mesmo havendo uma desordem, esta desordem segue alguns parâmetros futuros e que dependem de condições dos estados de Graceli, ou seja, a desordem segue alguns padrões e ordens conforme avança e passa por fases e agentes fenomênicos, estruturais e geométricos.


        Porem, a reversibilidade se torna impossível, aumenta a instabilidade e as incertezas de posição, intensidade, variações, efeitos e outros fenômenos conforme as próprias intensidades de dilatações, e agentes e estados envolvidos.


        Levando em consideração que mesmo havendo ordem não é possível a reversibilidade do estado e condições em que se encontravam a energia, matéria, momentum, inércias, dimensões, e outros agentes.


        A temperatura pode voltar ao seu lugar e ao seu ponto inicial, mas não as estruturas das partículas, as intensidades infinitésimas de padrões de energias, e nem o grau de oscilações que a energias, as interações, as transformações que passam estas partículas e suas energias, estruturas e interações, e as interações e intensidades de grau de variação de cada agente.


        Porem, a desordem é temporal, ou seja, com o passar do tempo outras ordens e padrões se afirmarão.


        Sendo que também a entropia varia conforme intensidade de instabilidade por tempo. E tempo por intensidade de instabilidade.


        Assim, segue efeitos variacionais e de incertezas por instabilidade de energia adicionada, e de tempo.


        Ou seja, uma grande instabilidade e desordem em pouco tempo vai levar a uma grande e instável por mais tempo uma entropia.


        Do que um grande tempo com pequena intensidade de instabilidade e energia adicionada num sistema ou numa variação térmica.


        Ou mesmo numa variação eletromagnética, ou mesmo na condutividade.


        Princípio tempo instabilidade de Graceli.

        Assim, a desordem acaba por encontrar uma ordem se não acontecer nenhuma instabilidade novamente. Pois, as partículas e energias tendem a se reorganizar novamente conforme o passar do tempo,  e esta reorganização segue um efeito progressivo em relação à desordem e tempo. Como os vistos acima.


        Ou seja, aquela organização anterior não vai mais acontecer, pois, segue o princípio da irreversibilidade, mas outras organizações se formarão conforme avança o tempo de estabilidade.


        as dimensões categorias podem ser divididas em cinco formas diversificadas.

        tipos, níveis, potenciais, tempo de ação, especificidades de transições de energias, de fenômenos, de estados de energias, físicos [estruturais], de fenômenos, estados quântico, e outros.



        paradox of the system of ten dimensions and categories of Graceli.



        a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.



        that is, categories ground the variables of phenomena and their interactions and transformations.



        and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.



        but structures are related to transitions of physical states, quantum, energies, phenomena, and others.



        as well as transitions of energies, phenomena, categories and dimensions.

        paradoxo do sistema de dez dimensões e categorias de Graceli.

        um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.

        ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.

        e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.

        mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.

        como também transições de energias, fenômenos, categorias e dimensões.







         = entropia reversível

        postulado categorial e decadimensional Graceli.

        TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.


        todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
        matriz categorial Graceli.

        T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D


        1] Cosmic space.
        2] Cosmic and quantum time.
        3] Structures.
        4] Energy.
        5] Phenomena.
        6] Potential.
        7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
        8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
        9] thermal specificity, other energies, and structure phenomena, and phase transitions.
        10] action time specificity in physical and quantum processes.




        Sistema decadimensional Graceli.

        1]Espaço cósmico.
        2]Tempo cósmico  e quântico.
        3]Estruturas.[isótopos, estrutura eletrônica, elementos químicos, amorfos e cristalinos, e, outros.
        4]Energias.
        5]Fenômenos.
        6]Potenciais., e potenciais de campos, de energias, de transições de estruturas e estados físicos, quãntico,  e estados de fenômenos e estados de transições, transformações e decaimentos.
        7]Transições de fases de estados físicos [amorfos e cristalinos] e estados de energias e fenômenos de Graceli.
        8]Tipos e níveis de magnetismo [em paramagnéticos, diamagnético, ferromagnéticos] e eletricidade, radioatividade [fissões e fusões], e luz [laser, maser, incandescências, fluorescências, fosforescências, e outros.
        9] especificidade térmica, de outras energias, e fenômenos das estruturas, e transições de fases.
        10] especificidade de tempo de ações em processos físicos e quântico.


        T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D


        Matriz categorial de Graceli.


        T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 Dl


        Tipos, níveis, potenciais, tempo de ação, temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.

        [estruturas: isótopos, partículas, amorfos e cristalinos, paramagnéticos, dia, ferromagnéticos, e estados [físicos, quântico, de energias, de fenômenos, de transições, de interações, transformações e decaimentos, emissões e absorções, eletrostático, condutividade e fluidez]].
        trans-intermecânica de supercondutividade no sistema categorial de Graceli.

        EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]

        p it = potentials of interactions and transformations.
        Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.

        h e = quantum index and speed of light.

        [pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..


        EPG = GRACELI POTENTIAL STATUS.

        [pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]

        , [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].

        quarta-feira, 15 de maio de 2019




        Energia potencial elétrica ou energia potencial eletrostática, é a energia potencial que resulta da interação conservativa de Coulomb; encontrando-se atrelada à configuração espacial de um sistema formado por cargas elétricas estáticas e/ou em movimento retilíneo uniforme. O termo "energia potencial elétrica" é geral, sendo utilizado para descrever a energia potencial em ambos os casos, enquanto o termo "energia potencial eletrostática" é utilizado em específico para descrever a energia potencial em sistemas com campos elétricos que essencialmente não variam com o tempo, ou seja, em sistema com cargas imóveis perante o referencial adotado. Não se deve confundir os mesmos com potencial elétrico, (medido em volts). Importante ressaltar que os campos elétricos atrelados a ondas eletromagnéticas não constituem campos conservativos, e por tal não admitem a associação à um potencial elétrico e ao conceito de energia potencial elétrica conforme estritamente definidos. Cargas elétricas aceleradas [1] emitem ondas eletromagnéticas, e às últimas não associam-se energias potenciais.
        "A energia elétrica" é a energia recém derivada da energia potencial elétrica. Quando usado vagamente para descrever a energia absorvida ou emitida por um circuito elétrico - por exemplo aquele fornecido por uma fonte elétrica - refere-se à energia que foi convertida a partir da energia potencial elétrica. Esta energia é gerada pela combinação de corrente eléctrica e potencial eléctrico que são fornecidos pelo circuito, sendo que no ponto onde essa energia potencial elétrica foi convertida em outro tipo de energia, ela deixa de ser energia potencial elétrica. Assim, a assim chamada "energia elétrica" é uma energia potencial antes de ser entregue para a utilização final, se transformando em um outro tipo de energia (calorluzmovimento, etc.).

        Definição[editar | editar código-fonte]

        Define-se energia potencial elétrica de duas cargas, como o trabalho realizado pelas forças do campo para as trazer de uma distância infinita, onde se considera a energia potencial elétrica nula [Ep (∞)=0], a uma distância r, finita.[2] O nível de referência considerado para definir energia potencial elétrica é, portanto, o infinito - distância à qual a interação eletrostática se anula.[2]
        Assim, para uma distância r, finita, entre as duas cargas pontuais, a energia potencial elétrica do sistema é dada pela expressão[2]:
        x

        EPTIG =
        X
        V [R] [MA] =  Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

        X =

        ΤDCG
        X
        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli.
        x
        sistema de transições de estados, e estados  de Graceli, 
        x
        T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D
        Onde:
        •  é a energia potencial elétrica.
        •  é a constante dielétrica ou permitividade do meio.
        •  e  são cargas elétricas (em Coloumb).
        •  é a distância entre cargas (em metros).
        A referência zero é usualmente adotada para ser o estado no qual as cargas de teste estão bastante separadas (tendendo ao infinito) e em repouso.[3]
        A energia potencial elétrica  de uma carga puntual , em presença de um campo elétrico , é definida como o negativo do trabalho  exercido pela força eletrostática para trazer de sua posição inicial  para outra posição ,[4] podendo-se obter a seguinte equação:
         , 
        x

        EPTIG =
        X
        V [R] [MA] =  Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

        X =


        ΤDCG
        X
        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli.
        x
        sistema de transições de estados, e estados  de Graceli, 
        x
        T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D

        em que  é a constante elétrica do meio,  a carga geradora do potencial elétrico a carga que vai ser dotada de energia, e  a distância atual entre elas (cargas) e  é a distância de referência.
        , onde V é o potencial elétrico.









        a energia potencial transformativa e de interações RELATIVISTA GRACELI está presente em todo tipo de transformações e interações , e que varia conforme o sistema decadimensional e categorial Graceli.


        EPTIG =
        X
        V [R] [MA] =  Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

        X =


        ΤDCG
        X
        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli.
        x
        sistema de transições de estados, e estados  de Graceli, 
        x
        T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D











         VELOCIDADE ALTERA E MODIFICA ESTRUTURAS, ENERGIAS, FENÔMENOS, INTERAÇÕES, TRANSFORMAÇÕES, TEMPERATURA, MOMENTUM, E OUTROS FENÔMENOS E CONFORME O SISTEMA DECADIMENSIONAL CATEGORIAL GRACELI.




        RELATIVIDADE DO MOVIMENTO E RELATIVIDADE CATEGORIAL GRACELI.

        [VELOCIDADE, ROTAÇÃO E MOVIMENTO ANGULAR]
        V [R] [MA] =  Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

        X =

        ΤDCG
        X
        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli.
        x
        sistema de transições de estados, e estados  de Graceli, 
        x
        T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D




        mecânica TRANSICIONAL Graceli se fundamenta nas mudanças de fases de estados, fases de isótopos, de estrutura atômica e molecular, [ FASES DE ESTADOS, ESTRUTURAS, ENERGIAS, FENÔMENOS E DIMENSÕES CATEGORIAIS] com variáveis de movimentos, interações, transformações, temperatura, densidade e pressão, e outros, e conforme o sistema decadimensional e categorial Graceli [SDC Graceli]. E FENÔMENOS E ENERGIAS E VARIAÇÕES DE ESTRUTURAS QUE ACONTECEM DENTRO DAS ESTRUTURAS E ENERGIAS.


        um ferromagnético sendo derretido a 300 graus Celsius tem uma realidade física e química, e com variações quântica e orbitais, elétrica, termodinâmicas, mecãnicas, e outros diferentes de um derretimento a 350 graus.

        o mesmo serve para outros materiais e com outras variações levando a um indeterminismo transcendente, categorial e decadimensional Graceli.


        ΤDCG
        X
        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli.
        x
        sistema de transições de estados, e estados  de Graceli, 
        x
        T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D


        O sistema decadimensional e categorial Graceli pode ser visto como um outro ramo da física e da física, onde envolve condições da matéria e da energia, fenômenos e dimensões, realçados por categorias.

        O único sistema que relaciona dez dimensões relacionadas com a matéria e suas energias, fenômenos e categoria.


        Com isto pode-se dividir a física em quatro grandes fases:

        a clássica, a quântica, a relatividade, e a categorial decadimensional Graceli.




        teoria da relatividade categorial Graceli

        ENERGIA, MASSA, FENÔMENOS, ESPAÇO, TEMPO, INTERAÇÕES, TRANSFORMAÇÕES, CONDUTIVIDADE, EMISSÕES, ABSORÇÕES, DIFRAÇÃO, MOMENTUM.


        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli.
        x
        sistema de transições de estados, e estados  de Graceli, 
        x
        T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D











        NO SISTEMA CATEGORIAL DE GRACELI TODO TIPO DE MOVIMENTO TEM AÇÃO TRANSFORMADORA  [como os outros elementos, como temperatura, radioatividade, luz, e outros],SOBRE ESTRUTURAS E ENERGIAS, TEMPO E ESPAÇO, INÉRCIA E GRAVIDADE, LUZ .


        Estados de Graceli de matéria, energias, momentuns, inércias, e entropias.


        Estados térmico.
        Estado quântico.
        De dilatação.
        De entropia.
        De potencia de entropia e relação com dilatação.
        De magnetismo [correntes, momentum e condutividades]..
        De eletricidade [correntes, momentum e condutividades].
        De condutividade.
        De mometum e fluxos variados.
        De potencial inercial da matéria e energia.
        De transformação.
        De comportamento de cargas e interações com elétrons.
        De emaranhamentos e transemaranhamentos.
        De paridades e transparidades.
        De radiação.
        Radioatividade.
        De radioisótopos.
        De relação entre radioatividade, radiação, eletromagnetismo e termoentropia.
        De capacidade e potencialidade de resistir a pressão, a capacidade de resistir a pressão e transformar em entropia e momentum.

        De resistir à temperaturas.
        E transformar em dilatação, interações entre partículas, energias e campos.
        Estado dos padrões de variações e efeitos variacionais.
        Estado de incerteza dos fenômenos e entre as suas interações.


        E outros estados de matéria, energia, momentum, tipos de inércia [como de inércia potencial de energias magnética, elétrica, forte e fraca, dinâmica, geométrica [côncava, convexa e plana] em sistema.


        E que todos estes tipos de estados tendem a ter ações de uns sobre os outros, formando um aglomerado de fenômenos de efeitos na produção de novas causas. E de efeitos variacionais de uns sobre os outros, ou seja, um sistema integrado.



        Sobre padrões de entropia.

        Mesmo havendo uma desordem, esta desordem segue alguns parâmetros futuros e que dependem de condições dos estados de Graceli, ou seja, a desordem segue alguns padrões e ordens conforme avança e passa por fases e agentes fenomênicos, estruturais e geométricos.


        Porem, a reversibilidade se torna impossível, aumenta a instabilidade e as incertezas de posição, intensidade, variações, efeitos e outros fenômenos conforme as próprias intensidades de dilatações, e agentes e estados envolvidos.


        Levando em consideração que mesmo havendo ordem não é possível a reversibilidade do estado e condições em que se encontravam a energia, matéria, momentum, inércias, dimensões, e outros agentes.


        A temperatura pode voltar ao seu lugar e ao seu ponto inicial, mas não as estruturas das partículas, as intensidades infinitésimas de padrões de energias, e nem o grau de oscilações que a energias, as interações, as transformações que passam estas partículas e suas energias, estruturas e interações, e as interações e intensidades de grau de variação de cada agente.


        Porem, a desordem é temporal, ou seja, com o passar do tempo outras ordens e padrões se afirmarão.


        Sendo que também a entropia varia conforme intensidade de instabilidade por tempo. E tempo por intensidade de instabilidade.


        Assim, segue efeitos variacionais e de incertezas por instabilidade de energia adicionada, e de tempo.


        Ou seja, uma grande instabilidade e desordem em pouco tempo vai levar a uma grande e instável por mais tempo uma entropia.


        Do que um grande tempo com pequena intensidade de instabilidade e energia adicionada num sistema ou numa variação térmica.


        Ou mesmo numa variação eletromagnética, ou mesmo na condutividade.


        Princípio tempo instabilidade de Graceli.

        Assim, a desordem acaba por encontrar uma ordem se não acontecer nenhuma instabilidade novamente. Pois, as partículas e energias tendem a se reorganizar novamente conforme o passar do tempo,  e esta reorganização segue um efeito progressivo em relação à desordem e tempo. Como os vistos acima.


        Ou seja, aquela organização anterior não vai mais acontecer, pois, segue o princípio da irreversibilidade, mas outras organizações se formarão conforme avança o tempo de estabilidade.


        as dimensões categorias podem ser divididas em cinco formas diversificadas.

        tipos, níveis, potenciais, tempo de ação, especificidades de transições de energias, de fenômenos, de estados de energias, físicos [estruturais], de fenômenos, estados quântico, e outros.



        paradox of the system of ten dimensions and categories of Graceli.



        a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.



        that is, categories ground the variables of phenomena and their interactions and transformations.



        and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.



        but structures are related to transitions of physical states, quantum, energies, phenomena, and others.



        as well as transitions of energies, phenomena, categories and dimensions.

        paradoxo do sistema de dez dimensões e categorias de Graceli.

        um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.

        ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.

        e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.

        mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.

        como também transições de energias, fenômenos, categorias e dimensões.







         = entropia reversível

        postulado categorial e decadimensional Graceli.

        TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.


        todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
        matriz categorial Graceli.

        T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D


        1] Cosmic space.
        2] Cosmic and quantum time.
        3] Structures.
        4] Energy.
        5] Phenomena.
        6] Potential.
        7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
        8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
        9] thermal specificity, other energies, and structure phenomena, and phase transitions.
        10] action time specificity in physical and quantum processes.




        Sistema decadimensional Graceli.

        1]Espaço cósmico.
        2]Tempo cósmico  e quântico.
        3]Estruturas.[isótopos, estrutura eletrônica, elementos químicos, amorfos e cristalinos, e, outros.
        4]Energias.
        5]Fenômenos.
        6]Potenciais., e potenciais de campos, de energias, de transições de estruturas e estados físicos, quãntico,  e estados de fenômenos e estados de transições, transformações e decaimentos.
        7]Transições de fases de estados físicos [amorfos e cristalinos] e estados de energias e fenômenos de Graceli.
        8]Tipos e níveis de magnetismo [em paramagnéticos, diamagnético, ferromagnéticos] e eletricidade, radioatividade [fissões e fusões], e luz [laser, maser, incandescências, fluorescências, fosforescências, e outros.
        9] especificidade térmica, de outras energias, e fenômenos das estruturas, e transições de fases.
        10] especificidade de tempo de ações em processos físicos e quântico.


        T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D


        Matriz categorial de Graceli.


        T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 Dl


        Tipos, níveis, potenciais, tempo de ação, temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.

        [estruturas: isótopos, partículas, amorfos e cristalinos, paramagnéticos, dia, ferromagnéticos, e estados [físicos, quântico, de energias, de fenômenos, de transições, de interações, transformações e decaimentos, emissões e absorções, eletrostático, condutividade e fluidez]].
        trans-intermecânica de supercondutividade no sistema categorial de Graceli.

        EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]

        p it = potentials of interactions and transformations.
        Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.

        h e = quantum index and speed of light.

        [pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..


        EPG = GRACELI POTENTIAL STATUS.

        [pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]

        , [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].

        Comentários

        Postagens mais visitadas deste blog

        TEORIAS E FILOSOFIAS DE GRACELI 317+